
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

EvalBench: A Software Library for Visualization Evaluation

W. Aigner, S. Hoffmann, and A. Rind

Institute of Software Technology & Interactive Systems, Vienna University of Technology, Austria

Abstract

It is generally acknowledged in visualization research that it is necessary to evaluate visualization artifacts in
order to provide empirical evidence on their effectiveness and efficiency as well as their usability and utility.
However, the difficulties of conducting such evaluations still remain an issue. Apart from the required know-how
to appropriately design and conduct user studies, the necessary implementation effort for evaluation features in
visualization software is a considerable obstacle. To mitigate this, we present EvalBench, an easy-to-use, flexible,
and reusable software library for visualization evaluation written in Java. We describe its design choices and
basic abstractions of our conceptual architecture and demonstrate its applicability by a number of case studies.
EvalBench reduces implementation effort for evaluation features and makes conducting user studies easier. It can
be used and integrated with third-party visualization prototypes that need to be evaluated via loose coupling. Eval-
Bench supports both, quantitative and qualitative evaluation methods such as controlled experiments, interaction
logging, laboratory questionnaires, heuristic evaluations, and insight diaries.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces—Evaluation/methodology

1. Introduction & Motivation

As the field of visualization is maturing, evaluation has be-
come an increasingly important part of research. The rele-
vance of evaluation for visualization research is documented
by its prominent role in virtually all currently published re-
search agendas and future challenge discussions, such as
[TC05] and [KKEM10], the organization of workshops and
conference sessions dedicated to visualization evaluation,
such as BELIV (www.beliv.org), as well as special issues
of scientific journals. It is agreed that evaluation is a key el-
ement in human-centered visualization design and that it is
necessary to provide empirical evidence on the effectiveness
and efficiency as well as usability and utility of new meth-
ods [Pla04]. Yet, the difficulty of conducting these evalua-
tions remains a common topic [LBI∗12]. There is a need
for a solid evaluation infrastructure to encourage visualiza-
tion researchers to carry out evaluations of their methods and
tools [TC05, KKEM10]. Researchers need solutions how to
integrate different methods for evaluation into their proto-
types and how to collect and measure the data generated by
the users participating in a study. To support them in their ef-
forts, we set out to develop the open source software library
EvalBench with the goals of being easy-to-setup and use,
customizable, and as independent and loosely coupled to the

visualization artifact to evaluate as possible. In addition, this
paper’s design section presents the architectural choices and
basic abstractions of our library independent from specific
programming languages.

Next, we give an overview of the challenges of visual-
ization evaluation followed by a discussion of related work.
In Sect. 4, we present the conceptual design of our library.
Then, we describe its implementation in Sect. 5 and demon-
strate its utility by case studies in Sect. 6. Finally, we pro-
vide a discussion of the benefits and limitations in Sect. 7
and conclude with pointers to future work in Sect. 8.

2. Evaluation in Visualization

Evaluating highly interactive visualization artifacts (tech-
niques or tools) is a challenging and thorny task because
visualization usually aims for supporting ill-defined prob-
lems and tasks based on large amounts of complex data
[LBI∗12, EY12]. Particular challenges are [Pla04]: the need
to work with data over longer periods of time and from dif-
ferent perspectives; the exploratory nature of visual analysis
where users may pose questions and get insights they did not
know they will have prior to looking at the visualization; and
that important discoveries occur rarely and maybe not at all.

c� 2013 The Author(s)
Computer Graphics Forum c� 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Wolfgang Aigner
The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/ .

http://www.beliv.org


W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

To support the multi-faceted challenge of visualization eval-
uation, a variety of different evaluation methods have been
applied in different scenarios and at different stages of visu-
alization research [Pla04, Car08, LFH10, LBI∗12]: field ob-
servations, interviews, case studies, laboratory observations,
controlled experiments, logging, heuristic evaluation (e.g.,
usability inspection), informal evaluation (expert reviews),
usability tests, laboratory questionnaires, visualization qual-
ity assessments, and algorithmic performance analysis. Our
goal is to support a wide range of common evaluation meth-
ods applied in visualization.

Broadly, evaluation methods can be divided into quanti-
tative and qualitative methods, whereas the first group em-
phasizes measurable outcomes and the second one empha-
sizes interpretative analysis of collected material. In a quan-
titative study, a controlled setting is created and empirical
evidence in the form of measurements (usually time and er-
ror) is collected under different conditions. The results are
analyzed with statistical hypotheses tests. Controlled exper-
iments are an important evaluation method because precise
results can be collected. However, a lot of effort is required
to perform such studies. Apart from the design and proto-
typical implementation of the studied visualization and in-
teraction artifacts, a number of additional steps are needed
[For10]: (1) preparation of a study design, (2) defining tasks
and providing data, (3) participant recruitment and assign-
ment to conditions, (4) conducting the study and collecting
data, (5) analysis of results, and (6) reporting the findings.
Qualitative evaluation methods often provide a different and
complementing view on visualization artifacts. They can be
conducted in more realistic settings and yield deeper under-
standing of human reasoning processes. Qualitative studies
follow the same steps presented above, though some steps
apply different methods (e.g. coding transcripts) and other
steps might leave more freedom to participants (e.g., choos-
ing tasks and data).

Each of these six steps is challenging in itself. While there
are guidelines (e.g., [Car08, LFH10]) and supportive sys-
tems available for various steps (e.g., SAS JMP or Touch-
stone [MABL∗07] for study design, task taxonomies, dataset
repositories, Amazon Mechanical Turk for participant re-
cruitment [HB10], or scripts for data preprocessing and sta-
tistical analysis), most of the steps mentioned above need to
be highly customized for different evaluation scenarios and
are hard to reuse (e.g., writing effective task lists, recruit-
ing domain experts, coding qualitative results). However, the
step of conducting the study and collecting data using eval-
uation features built into visualization software appears to
have the inherent potential for reusable components. This
involves guiding participants through an evaluation session,
collecting results through evaluation features in the software
(i.e., instrumentation), and providing means for linking tran-
scripts of insight studies or usability inspections to the state
of a visualization artifact and preceding interactions. There
are a number of experimentation frameworks mainly from

the HCI realm. However, those are generally more tightly
coupled and rigid in terms of prescribing a certain structure
that visualization artifacts need to follow. Thus, more real-
istic evaluation settings such as long-term and insight-based
evaluations can hardly be achieved. To develop interactive
visualizations, a number of libraries and toolkits exist such
as prefuse [HCL05], Obvious [FHBW11], or D3 [BOH11]
that provide reusable components (e.g., range slider) and
generalizable concepts (e.g., view management for brush-
ing and linking). But, to the best of our knowledge, there are
no such libraries that provide components for visualization
evaluation to be added to interactive visualization artifacts.
To fill this gap, we present our library EvalBench after re-
viewing related work in more detail.

3. Related Work

Above we presented the range of evaluation methods at the
disposal of visualization researchers and a generic six-step
evaluation process. In this work we focus on the step of con-
ducting the study. This step demands rigorous and consistent
execution of the study design. Thus, it is evident that many
researchers automate parts of their studies with evaluation
features. Next, we present some examples of evaluation fea-
tures and evaluation systems that influenced our work.

Quantitative Evaluation. The Hierarchical Visualisation
Testing Environment (HVTE) [AK07] launches predefined
tasks and system configurations, and automatically records
user answers and task completion times. However, it is
tightly integrated with a visualization system for hierarchi-
cally structured information. Touchstone [MABL∗07] is a
bundle of platforms to design, run, and analyze HCI ex-
periments on pointing interaction techniques. The run plat-
form launches the experiment as specified on the design plat-
form, supporting different input devices, and collecting per-
formance data and interaction logs. For this, all experiment
components (e.g., visualization techniques) need to extend
base classes of the framework. For graphical output, it in-
cludes a simple zoomable scene graph viewer. Furthermore,
it is tailored for tasks that are completed by interaction ges-
tures or item selection, but not for answering questions (e.g.,
input of a numeric value). Thus, it needs far-fetched adaption
to evaluate anything other than pointing interaction tech-
niques. The Generalized Fitts’ Law Model Builder [SM95]
is an earlier system specialized on pointing experiments.
Likewise, behavioral experiment systems such as OpenS-
esame [MST12] or Presentation from Neurobehavioral Sys-
tems intend to produce visual stimuli through their particular
framework. Heer et al. [HB10] identified limitations of Ama-
zon Mechanical Turk as a platform to conduct graphical per-
ception experiments and they recommend to use it only for
recruitment and participant management but launch a eval-
uation/visualization system via Flash (e.g., [HB10]), Java
Web Start (e.g., [JS10]), or JavaScript. USEMATE [ASJ10]
is a system for administrating and conducting usability ex-

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

periments. With it, the facilitator can fill out usability ques-
tionnaires and record execution times. There is, however, no
synchronization with the studied artifact.

Qualitative Evaluation. Rester et al. [RPW∗07] developed
an insight collection system for a study that compared a vi-
sualization prototype to machine learning and exploratory
data analysis methods. Subjects of their study reported in-
sight as free text with a confidence rating via a web interface
that was independent from the visualization prototype. They
were also asked to upload a representative screenshot.

Logging. Recording system states or user interactions is
common practice in visualization research. These logs can
either be used to investigate reasoning processes in in-
sight studies (e.g., [DJS∗09]) or as supplemental material in
controlled experiments (e.g., [JS10]). Glassbox [CHLH06]
records keyboard events, window events, file events, screen-
shots once per second, etc., as well as logging through an
application programming interface (API). In aspect-oriented
programming logging can be a separate aspect from the eval-
uated visualization artifact [HEF08]. Through tight integra-
tion with a P-Set Model of the visualization artifact, it is pos-
sible to log the effects of interactions on the visualization ar-
tifact rather than logging the interactions themselves. TRUE
[KGS∗08] logs event sequences with contextual information
in complex environments (e.g., video games). Tome [GL12]
builds keystroke-level models from interaction logs, so that
routine task performance of alternative user interfaces can
be predicted. Moreover topically related are history tracking
mechanisms such as in VisTrails [CFS∗06], a prototypical
Tableau extension [HMSA08], or Aruvi [SvW08].

Summary. On the one hand, evaluation features are often
developed ad-hoc and tightly integrated with the studied vi-
sualization systems (e.g., HVTE). On the other hand, the
evaluation systems we are aware of provide a framework
and the studied artifacts have to be integrated within their
architecture (e.g., Touchstone). While it is possible to adapt
them for visualization prototypes, it enforces more structure
on the evaluated artifact than our approach. This limits their
applicability for complex systems especially if evaluation of
an already existing system is intended. Furthermore, many
systems support only one evaluation method. Considering
that, a lack of an easy-to-use, flexible, and reusable software
library providing evaluation features can be observed.

4. Conceptual Design

This section describes the architecture and basic abstrac-
tions of the library independent of specific programming
languages. Our intention is to facilitate the implementa-
tion of evaluation functionality to be combined with exist-
ing visualization artifacts. To provide a clear structure and
allow for extensibility, we propose our conceptual design
partially based on the software design patterns by Gamma

et al. [GHJV95]. The diagrams that are shown in the fol-
lowing use the extended object-modeling technique notation
of [GHJV95] to depict classes and their relations (e.g., a cir-
cle at the end of an arrow indicates a 1-to-n relationship and
a diamond at base of a relation denotes aggregation). First,
the overall structure of the library is presented.

4.1. Evaluation Manager & Delegate

Fig. 1 illustrates the abstract high-level structure for the eval-
uation library. The EvaluationManager is the central compo-
nent and responsible for managing the evaluation process.
Moreover, the manager functions as a FACADE object pro-
viding a simple interface to the underlying subcomponents
in order to make the library easier accessible and reduce
dependencies to the subcomponents. Because only one in-
stance of the manager is needed, it can be implemented fol-
lowing the SINGLETON pattern to make it globally available
and enable easy access. The rationale behind this is that the
manager is often needed by subcomponents of the library but
also by the evaluated visualization artifact, e.g., to setup the
study design or to log user interactions.

The EvaluationDelegate is the interface to the visualiza-
tion artifact. It is responsible for controlling the visualization
and also for providing information about the current state of
the visualization artifact. The EvaluationDelegate can be part
of a visualization artifact’s source code and control the visu-
alization directly or it might have indirect access to the inves-
tigated visualization through an interface (e.g., an API). The
DELEGATION pattern was selected in order to decouple the
evaluation process from the visualization and is intended to
facilitate the integration of the evaluation functionality into
existing software. The EvaluationManager forwards impor-
tant events in the evaluation procedure to the EvaluationDel-

egate to enable adaption of the visualization according to the
current evaluation state. Such adaptions could be to change
the dataset that is currently displayed or to use a different

Figure 1: High-level structure of evaluation library.

The EvaluationManager controls the evaluation. The abstract
EvaluationDelegate needs to be implemented to connect the
library to the visualization artifact.

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

visual encoding. The EvaluationDelegate is also in charge
of presenting a possibly necessary evaluation user interface
(UI) to the test persons (e.g., instructions and input textbox).
Since the EvaluationManager is agnostic to the visualization
artifact to be evaluated, the EvaluationDelegate implementa-
tion acts as link. Design-time attributes (such as the dataset
to be visualized, session structure, task definitions, and in-
structions) can be read from an external data source by the
DesignLoader to create groups of evaluation sessions that
have to be accomplished by a study participant. The Session-

Journal and InteractionLogger record the run-time attributes
that arise during the execution of an evaluation session (such
as task completion times, error rates, insights, interactions),
which are the subject of analysis after the evaluation pro-
cess. The OutputManager is responsible for configuring the
output destination of the run-time attributes.

4.2. Quantitative Evaluation

In a controlled experiment, participants usually have to per-
form a predefined set of tasks in one or more sessions re-
flecting different treatments formed by varying experiment
factors [LFH10]. We developed a data structure that intends
to reflect this common structure (see Fig. 2). A task usually
contains one question; the response to such a question could
be to identify a certain data value from a visual element in
the visualized dataset or select a certain area in the visual-
ization. But in some cases it might also be necessary to ask
several questions that pertain to one task (e.g., Which ele-
ment is larger? By how much?). Therefore, a Task contains
at least one and possibly multiple Questions. A quantitative
evaluation can also include several sessions (or blocks) that
are bundled in a session group. A practical example would
be if an experimenter wants the test persons to perform a
training session before advancing to an actual experiment
session. Each session group may contain a list of sessions
or even session groups again to allow multiple levels of ag-
gregation. This is necessary if a divergent execution order of

Figure 2: Data model for quantitative experiments. Con-

creteQuestions need to host and process different data types
according to the question type (e.g., multiple choice).

Figure 3: Evaluation process. Simplified state machine that
is run by the EvaluationManager during an evaluation.

sessions (e.g., Latin square) is intended but sub-sessions are
required to stay in sequential order (e.g., training and actual
session). In order to realize this behavior, the COMPOSITE
pattern enables the composition of Sessions and Session-

Groups into a multilevel tree structure, where the nodes can
be treated uniformly.

A task contains several predefined design-time attributes
like category to classify tasks or instructions that are dis-
played to the test persons. A task might also contain a re-
peat attribute that allows the test person to receive feedback
on correctness and duration, and decide if they want to re-
peat the task. This is particularly useful for training tasks.
To enable the assignment of various experiment factors to
tasks and sessions (e.g., dataset or visualization type), the
data structure of the configuration attribute needs be capa-
ble of storing multiple key/value pairs (e.g., a map or dictio-
nary). The run-time attribute completion time is stored in the
data structure of the task rather than for each question indi-
vidually. This decision was taken because we assume that if
multiple questions are assigned to a task, each of them can
be answered based on a single discovery or insight gained
from a visualization artifact. The abstract class Question pro-
vides the base class for each ConcreteQuestion and defines
the method that is invoked to assess the correctness. This
aims to facilitate flexible extension of the library with new
question types. Because each question type needs to store
and process different data types and may have different cor-
rectness criteria, each ConcreteQuestion needs to host a data
structure that is capable of storing the correct answer (e.g.,
a numerical value), possible restrictions for the answer (e.g.,
an allowed value range), and the provided answer (e.g., nu-
merical value given by the test person).

Execution of an evaluation. To start an evaluation, the
EvaluationManager has to be initialized with a study design.
The design can be defined manually in the source code or by
passing an externally stored study design to a DesignLoader

implementation. Subsequently, the EvaluationManager runs
a state machine defined by the study design (see Fig. 3). The
events are triggered by the EvaluationDelegate and the test

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

persons. The EvaluationDelegate is responsible for prepar-
ing the visualization for each experiment state and the test
persons interactively trigger the completion of tasks.

User Interface Provider. In order to accomplish a task dur-
ing an experiment, test persons need to be provided with a UI
showing instructions and giving them a possibility to spec-
ify the answers to the questions that are assigned to a task.
The ViewFactory (see Fig. 4) is responsible for creating an
appropriate UI for a given task; the created view should pro-
vide interactive means to answer its assigned questions. The
factory creates a TaskView using a strategy for each question
assigned to the given task. A strategy is responsible to check
for sufficient input, store the given answer, and provide the
necessary UI. The STRATEGY pattern ensures flexibility for
providing individual UIs for existing or new question types
by extending the factory with new strategies. If the task re-
quires some interaction with the visualized data (e.g., select-
ing an item in the visualization), one can implement a special
question strategy that integrates with the UI of the evaluated
visualization artifact (e.g., an OBSERVER).

Session Journal & Interaction Logging. It is essential to
record a protocol of the experiment sessions for further anal-
ysis. A common practice in evaluations of user performance
is to record task accuracy and task completion time. For this
reason, each EvaluationSession holds an instance of Ses-

sionJournal (see Fig. 1) which is in charge of saving all rel-
evant data for each task after its completion. In addition to
the journal, a separate interaction log is saved for each ses-
sion. The visualization artifact notifies the EvaluationMan-

ager of interaction events that need to be logged. These will
be forwarded to an InteractionLogger (see Fig. 1). The cre-
ation and naming of the files and directories for sessions and
session groups is performed by the OutputManager to en-
sure that session journals and interaction logs are saved in
the same directories and can be configured in one place. The
OutputManager may also be used to save screenshots of the
visualization tool, record audio and video logs, or save the
current state of a visualization artifact. To make the evalua-
tion system independent of the implementation of the Ses-

Figure 4: ViewFactory. Creates a view for a given task,
whereas the QuestionStrategies provide a subview, set the
answers, and check for sufficient input for each question.

sionJournal (e.g., CSV or XML output) an ABSTRACT FAC-
TORY pattern is applied for creating a concrete journal (see
Fig. 5).

4.3. Qualitative Evaluation

The presented design of the library is also capable to sup-
port the collection of qualitative data as with insight diaries,
questionnaires, heuristic evaluations, and interaction logs.

Insight Diaries. Insight-based methodologies [Nor06]
evaluate visualization systems in real-world data analy-
sis scenarios and are usually less guided than quantitative
methodologies. The test persons are requested to keep a di-
ary of the insights gained while using one or more visual-
ization artifacts. These diary entries usually consist of text
describing the found insight in narrative form but can also
be structured in several ways (for example by adding Lik-
ert scales to classify the level of relevance or certainty). In
our concept, insight diary entries can be modeled similar to
tasks in quantitative evaluations. To provide the UI for an in-
sight diary entry, special Question types can be created (e.g.,
Likert scale question or free-text question) that are assem-
bled using a tailored ViewFactory. To represent predefined
templates of diary entries, different tasks representing such
entries can be collected in an evaluation session. Instead of
letting the actual evaluation session automatically choose the
next task, it can be left to the test persons to choose the task
(i.e., insight type) they want to record using the Evaluation-

Delegate. The Session class thus needs an additional repeat
property that is recognized by the EvaluationManager to al-
low the repetition of the session that consists of diary tem-
plates. A session execution order of free choice indicates that
the upcoming task (i.e., diary entry) is required to be selected
by the test person. The EvaluationManager needs to be con-
figured to run an extended version of the state machine (see
Fig. 3) with a Pause state between the Task executing and
Prepare for Task states, and an event that triggers the termi-
nation of a repeating session.

Heuristic Evaluations. Heuristic evaluations and inspec-
tions aim at finding, for example, usability problems and
are performed by evaluators that examine the visualization
tool [Nie94]. In terms of data collection and execution of
the study, heuristic evaluations are similar to insight-based

Figure 5: JournalFactory. Enables the configuration of var-
ious journal implementations.

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

evaluations and differ essentially only in their intention. In-
stead of collecting insight diary entries, observed problems
with the investigated tool are collected, often using a set of
heuristics to focus on important aspects of the tool.

Questionnaires. In short, questionnaires are a well-defined
and well-written set of questions to which an individual is
asked to respond [LFH10]. Questionnaires are frequently
used in addition to other evaluation methods in order to col-
lect demographical information, feedback, or opinions from
the test persons. Questionnaires can be modeled as a set of
Tasks that contain a list of Questions. These tasks need to be
aggregated in Sessions, similar to quantitative evaluations.

Interaction Logging. Logging screenshots and/or applica-
tion states is important to make sense of the recorded in-
sights or usability issues by relating them to what actually
happened on the screen. Moreover, interaction logs can be
used to find patterns of interactivity that users produce to
draw conclusions about the exploration process [PWM∗12].
The evaluation progress (i.e., start and completion of tasks
and sessions) is automatically added to the log and the state
of the investigated visualization artifact is added by query-
ing the EvaluationDelegate (see Fig. 1). The conceptual de-
sign of our library allows for logging of interactions via the
globally available EvaluationManager that forwards the ac-
tual logging to an InteractionLogger instance. As this can in-
troduce a potentially unwanted dependency between the vi-
sualization artifact and the evaluation library, also a logger
framework of choice can be used directly. In both cases, the
output location can be configured for the various stages of
an evaluation (see Fig. 3) by the EvaluationDelegate using
the OutputManager.

public void prepareForEvaluationSessionGroup(

EvaluationSessionGroup sessionGroup) {

// add an evaluation panel to the frame
addEvaluationPanel();

// choose session and trigger execution with a task list
EvaluationManager.getInstance().startEvaluationSession(

sessionGroup.getSessionList().get(0), "tasks.xml");

}

public void prepareForEvaluationSession(

EvaluationSession aSession) {

// prepare the visualization for the upcoming session
prepareMyVisualization(aSession.getConfiguration()

.get("VisualizationType");

// show an info dialog
taskDialog.announceSession(aSession, true);

}

public void prepareForEvaluationTask(Task aTask) {

// show a modal dialog with the task description
taskDialog.showDescription(aTask);

// load the data to be visualized for this task
loadData(aTask.getConfiguration().get("Dataset"));

// get a task panel from the manager
setMyEvaluationPanel(EvaluationManager

.getInstance().getPanelForTask(aTask));

}

Figure 6: Implementation of EvaluationDelegate. Frag-
mentary example of an evaluation system.

5. EvalBench Library

Based on the conceptual design presented above, we devel-
oped EvalBench as a software library to support evaluation
studies in visualization. EvalBench is written in Java 1.6
and uses the libraries Apache Commons Lang 3.0, Apache
log4j 1.2, and JCalendar 1.4 by Kai Toedter.

For an evaluation study, the studied visualization artifact
needs to implement the EvaluationDelegate interface (see
Fig. 6) and, thus, is notified of the progress in the evalua-
tion process. The setup of session groups and assignment of
subjects needs to be specified in the source code. EvalBench
can load the task list for each session from an XML file (see
Fig. 7). It provides subclasses of Question and related UIs
for multiple choice questions, free text, numbers as text or
on a slider, date selection from a calendar, agreement on a
Likert scale, and yes/no questions (see Fig. 8). The timing
of task executions and answers to questions are collected by
a SessionJournal, which includes also the participant id and
design-time attributes (e.g., task description) in order to be
self-contained. The journals can be saved either in CSV for-
mat for import in statistics software or in XML format. Inter-
action logging is handled by the library log4j. EvalBench en-
sures that log4j creates one log file per session and that they
are stored at the same location as the evaluation journal. It
also provides convenience dialogues to display intermediate
messages and hide the visualization artifact.

Overall, the EvalBench library is comprised of about

<?xml version="1.0" encoding="UTF-8"?>
<taskList xsi:noNamespaceSchemaLocation="tasklist.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<task id="task4">
<task-type>Hypothesis2</task-type>
<task-description>Look at energy use and

production.</task-description>
<task-instruction>Use the slider to zoom in, if

required.</task-instruction>
<configuration />
<questions>
<choice-selection id="quest4_1">
<question-text>Which country has the lowest energy

use?</question-text>
<correctAnswers>
<correctAnswer>Sweden</correctAnswer>

</correctAnswers>
<possibleAnswers>
<possibleAnswer label="France" />
<possibleAnswer label="Greece" />
<possibleAnswer label="Sweden" />

</possibleAnswers>
</choice-selection>
<yesno id="quest4_2">
<question-text>Is this country’s energy use larger

than its production?</question-text>
</yesno>

</questions>
</task>

</taskList>

Figure 7: Task Definition in XML. Illustrative example
with one task comprised of a multiple-choice question and
a yes/no question.

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

(a) Number input (b) Number input on a slider

(c) Likert scale (d) Yes/no question

(e) Multiple choice (one answer) (f) Multiple choice (multiple an-
swers)

(g) Date selection on calendar (h) Long text

Figure 8: Gallery of Question-answering Controls Pro-

vided by EvalBench.

3,000 lines of code (LoC). In order to allow widespread use
by the research community as well as practitioners, we make
it available as open-source software under a BSD 2-Clause
license. The project is available at www.evalbench.org and
GitHub. We invite the community to share extensions via
this platform.

6. Case Studies

We developed EvalBench in the course of evaluation studies
for our visualization research projects (such as [AKMM11,
ARH12, Neu12, PWM∗12]). Three of these evaluations will
serve as case studies to show how EvalBench can be applied.

Comparative Evaluation with Facilitator. We conducted
a controlled experiment to compare task completion times
and error rates of two visualization techniques that com-
bine quantitative time-series data with qualitative abstrac-
tions [ARH12]. We recruited 20 participants and tested both
techniques with each participant. Since the study was de-
signed within-subjects, we provided two similar datasets and
two task lists for each dataset (three training tasks and 24
evaluation tasks). The experiment was conducted with a fa-
cilitator who manually set the sequence of techniques and
dataset using a Latin square. Within each evaluation session
the tasks were presented in random order. The session jour-
nals in CSV format were analyzed with R using boxplots and
statistical hypothesis tests. We also logged the available in-
teraction techniques to compare the performed interactions.

We implemented both visualization techniques and the
evaluation features in the same Java application. The main
reason to do this was to avoid bias from different user inter-
faces and interaction modes, and it also made it easier to exe-
cute the study. Fig. 9 shows the complete user interface with
the evaluation features on the right and one of the tested vi-
sualization techniques occupying the rest of the screen. The
screenshot also demonstrates the flexibility of EvalBench.
It can be extended with individual UIs for questions and
make direct use of interactions with the visualization arti-
fact for data input. Here, an interval selection question is
answered by brushing a time interval directly in the visual-
ization. The implementation effort for the evaluation features
was about 750 LoC and focused on putting together sessions,
task lists, data files, and the user interface for the facilitator
to start a session. Additional 200 LoC were needed for the
interval selection question strategy. In comparison, a similar
study [AKMM11] we conducted without using EvalBench
required about twice as many LoC.

Comparative Evaluation with Java Web Start. In this
study we experimentally compared three visualization tech-
niques to explore bivariate patterns across time [Neu12]. The
study design was similar to the one described above but fea-
tured some notable differences: First, we built the evaluation
system self-contained and self-explanatory enough, so that
the participants could work on their own computers with-
out a facilitator. This allowed us to test with a larger num-
ber of participants and keep administrative overhead low.
For this, we made the evaluation system runnable via Java
Web Start. It began with a dialog to ask for the participant
id and then executed all six sessions after each other. Be-
fore each evaluation session (22 tasks) there was a training
session (five tasks) and the three compared techniques were
tested in random order. Between sessions, a dialog asked the
participants to take a break if needed. At the end, the par-
ticipants were presented a short questionnaire to determine
subjective feedback on the understandability and usability of
the visualization techniques. The session journal, interaction
logs, and questionnaire results were saved to a directory on
the participants’ computers and they were asked to upload
the complete directory. Second, the evaluated visualization
system offered a wider range of interaction techniques. We
collected interaction logs as an additional data source for our
study, and we also checked whether participants had manip-
ulated the log files. Furthermore, each task needed to start in
a well-defined state of the visualization techniques. Thus, the
EvaluationDelegate was used to load the visualization states
(stored in an external file) and apply them using an API.

Even though the evaluation was completely automated,
the implementation effort of about 800 LoC was comparable
to the previously presented case study. Here, additional 750
LoC were required for the questionnaire, but this method is
now supported natively by EvalBench.

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://www.evalbench.org
https://github.com/ieg-vienna/EvalBench


W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

Figure 9: User Interface for Comparative Evaluation in [ARH12]. The visualization technique takes the larger part of the
screen with the task view on the right (blue rectangle). The screenshot demonstrates an interval selection question, which the
participants answer by brushing a time interval in the visualization (blue oval).

Interaction Logging during a Usability Study. In this
qualitative study of a medical visualization system
[PWR∗11] the participants were guided by three high-level
tasks but were not constrained in their usage of the visual-
ization system. On advice of the social scientist in the team,
the tasks and subsequent interviews were provided by a hu-
man facilitator in order to use the limited time of domain
experts more effectively. Thus, we did not include any vis-
ible evaluation features in the system and only performed
interaction logging with EvalBench. To analyze the log files
we coded the interactions by the user intent categorization
of Yi et al. [YKSJ07] and investigated interaction sequences
and transition probabilities [PWM∗12]. The implementation
effort amounted to about 150 LoC for logging, in particular
to log the activation of tooltips.

7. Discussion

EvalBench grew out of the experiences we made in carrying
out evaluations of our research prototypes and was driven
by the practical requirements imposed from different evalu-
ation methods. Developed initially for internal use, we gen-
eralized our concepts and have now reached a stage with an
adequate amount of functionality to support different evalu-
ation scenarios and mature enough to make it available for
the visualization community as open source library. Thus,
visualization researchers can take advantage of it and also
contribute to the improvement and further development of
EvalBench.

Benefits. The implementation is based on an extensible ar-
chitecture and integrates multiple software design patterns
[GHJV95] to ensure flexibility and pave the way for future
experimenters to reuse and adopt the library for their spe-
cial needs. This has been demonstrated in one of the case
studies, where custom data input was added in the form of
direct time interval selection. In contrast to related work for

supporting evaluations in HCI, EvalBench takes a different
approach. Through loose coupling, the library can be inte-
grated into existing visualization solutions without the need
for major changes in the architecture of the artifact to exam-
ine. The flexibility of the library is shown by its support for
a variety of different evaluation methods that are commonly
used in visualization such as controlled experiments, lab-
oratory questionnaires, interaction logging, insight diaries,
heuristic evaluations, as well as combinations thereof. Eval-
Bench allows more reliable and precise evaluation than ap-
proaches relying on manual methods of data gathering. Stud-
ies such as [AMTB05, OndL∗10, MSGB∗08] report prob-
lems because of imprecise and false measurements due to
manual time recording. These can be mitigated by using au-
tomated methods for data recording. Moreover, a study per-
formed with EvalBench can be reused and reproduced. The
exact tasks and the study design are structured in a modular
way and can be reused in subsequent studies. Additionally,
the setup of an experiment with EvalBench is relatively easy
and does not require the developer to engage deeply with
the inner working principles of the library as long as the de-
fault implementations of the components are sufficient. This
is underlined by the fact that several master students as well
as high school interns were quickly able to use and extend
EvalBench in the past. The library has already shown to be a
valuable asset when conducting user studies as documented
in Sect. 6 and we have also demonstrated that it decreases
implementation effort considerably.

Limitations. Although EvalBench already has a good set
of functionality, there are a number of limitations to con-
sider. First, it only supports a subset of the portfolio of eval-
uation methods applicable to visualizations. Second, even
though EvalBench was designed as minimally invasive as
possible for the visualization to evaluate, implementation ef-
fort is still necessary. Black-box evaluation is possible but

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

not in a straightforward manner. For example, to perform a
study with Tableau, the delegate can launch it with command
line parameters or control it through an API while leading
through the study in its own window. Third, loading study
designs from files is not yet implemented in EvalBench. An-
other limitation is that currently the library does not support
remote controlling of experiment sessions. In a computer lab
setting for example it would be desirable to perform a num-
ber of evaluation sessions simultaneously with a group of
test persons. This approach would allow equally distributed
factors among subjects and also ensure equal conditions for
all test persons, since the instructions that test persons re-
ceive play a crucial role and physical and social environ-
mental factors may introduce systematic errors [LFH10].

8. Conclusion & Future Work

Our main contributions are threefold: First, we have de-
veloped an easy-to-use, flexible, and reusable software li-
brary specifically suited to the requirements of evaluating
visualizations. EvalBench helps in carrying out commonly
used evaluation methods in the field and puts attention not
only to support controlled laboratory studies but allowing
for a higher degree of realism such as with long-term and
insight-based methods. Second, we have discussed the de-
sign choices and basic abstractions of our conceptual ar-
chitecture independent of specific programming languages.
Third, we have shown the practical utility of applying Eval-
Bench in a number of case studies. They cover a range of
popular evaluation scenarios including both, quantitative and
qualitative methods.

Future Work. Although EvalBench was designed on the
basis of a number of different user studies, not every aspect
of possible experiments is covered. Therefore, the library
currently constitutes a primal structure and will hopefully be
adapted and further developed by future experimenters for
additional applications in human-centered visualization de-
sign and development. There are already a number of ideas
on how to extend the library. Despite the fact that in many
cases it is sufficient to edit an XML file and write a few
lines of code to setup an experiment, a visual editor would
be desirable to ease experiment design for users. Another
possibility to support this would be to establish interoper-
ability with the design platform of Touchstone and to extend
EvalBench to load these externally created experiment de-
signs. As mentioned in the limitations, it would make sense
to have centralized administration of remote experiments.
Doing so, we could, for example, make sure that subjects
are assigned evenly to experiment groups or that measure-
ments and results are collected on a single place on a server.
Another useful extension that would make an even broader
usage possible is to integrate further modalities of data col-
lection. This could include audio for thinking aloud, video in
terms of screen recording and/or videotaping of subjects, eye
tracking, or functional magnetic resonance imaging (fMRI).

Moreover, EvalBench allows for recording data in a struc-
tured format but does not offer any functionality for analyz-
ing the data. In this sense, it could be extended to include
generic statistical processing functions or interface directly
with statistics software such as R. It is also expected that fu-
ture evaluation experiments will make it necessary to extend
the question types and corresponding answering possibili-
ties. This is why the structure of the library was designed
to facilitate the extension with new question types. Finally,
the library can be ported to other object-oriented program-
ming languages, following the conceptual design presented
in Sect. 4.

Apart from the ways to possibly extend EvalBench, other
organizational measures could help to increase the quality
of evaluations. Specifically, it would be very helpful to have
an online repository that hosts benchmark data sets, analy-
sis scripts, examples for study designs, tasks, questionnaires
(e.g., a standardized demographic questionnaire) possibly al-
ready in a form that can be directly reused in EvalBench. Our
aim is to provide useful infrastructure in order to leverage
evaluation in visualization as a service to the community.

Acknowledgements. This work was supported by the Laura
Bassi Centre of Excellence initiative via CVAST (#822746), by the
Austrian Science Fund (FWF) via the HypoVis project (#P22883),
and by the European Commission via the MobiGuide project (#FP7-
287811). Many thanks to David Bauer, Barbara Neubauer, and
Thomas Turic for their implementation contributions, as well as
Paolo Federico and Silvia Miksch for feedback to our manuscript.

References

[AK07] ANDREWS K., KASANICKA J.: A comparative study of
four hierarchy browsers using the hierarchical visualisation test-
ing environment (HVTE). In Proc. Int. Conf. Information Visu-
alization, IV (2007), IEEE, pp. 81–86. 2

[AKMM11] AIGNER W., KAINZ C., MA R., MIKSCH S.: Bertin
was right: An empirical evaluation of indexing to compare multi-
variate time-series data using line plots. Comp. Graphics Forum
30, 1 (2011), 215–228. 7

[AMTB05] AIGNER W., MIKSCH S., THURNHER B., BIFFL S.:
PlanningLines: novel glyphs for representing temporal uncertain-
ties and their evaluation. In Proc. Int. Conf. Information Visuali-
sation, IV (2005), IEEE, pp. 457–463. 8

[ARH12] AIGNER W., RIND A., HOFFMANN S.: Compara-
tive evaluation of an interactive time-series visualization that
combines quantitative data with qualitative abstractions. Comp.
Graphics Forum 31, 3 (2012), 995–1004. 7, 8

[ASJ10] AHMAD W. F. W., SULAIMAN S., JOHARI F. S.: Us-
ability management system (USEMATE): A web-based auto-
mated system for managing usability testing systematically. In
Proc. Int. Conf. User Science and Engineering, i-USEr (2010),
pp. 110–115. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-
driven documents. IEEE Trans. Visualization and Computer
Graphics 17, 12 (2011), 2301–2309. 2

[Car08] CARPENDALE S.: Evaluating information visualizations.
In Information Visualization, Kerren A., Stasko J. T., Fekete J.-
D., North C., (Eds.). Springer, Berlin, 2008, pp. 19–45. 2

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.



W. Aigner, S. Hoffmann, A. Rind / EvalBench Library

[CFS∗06] CALLAHAN S. P., FREIRE J., SANTOS E., SCHEI-
DEGGER C. E., SILVA C. T., VO H. T.: VisTrails: visualiza-
tion meets data management. In Proc. ACM SIGMOD Int. Conf.
Management of Data (2006), pp. 745–747. 3

[CHLH06] COWLEY P., HAACK J., LITTLEFIELD R., HAMP-
SON E.: Glass box: capturing, archiving, and retrieving work-
station activities. In Proc. Workshop Continuous Archival and
Retrieval of Personal Experiences (2006), ACM, pp. 13–18. 3

[DJS∗09] DOU W., JEONG D. H., STUKES F., RIBARSKY W.,
LIPFORD H. R., CHANG R.: Recovering reasoning processes
from user interactions. IEEE Comp. Graphics and Applications
29, 3 (2009), 52–61. 3

[EY12] ELMQVIST N., YI J. S.: Patterns for visualization evalu-
ation. In Proc. Workshop BEyond time and errors: novel evaLua-
tion methods for Information Visualization, BELIV (2012), ACM,
pp. 12:1–12:8. 1

[FHBW11] FEKETE J.-D., HEMERY P.-L., BAUDEL T., WOOD
J.: Obvious: A meta-toolkit to encapsulate information visualiza-
tion toolkits—one toolkit to bind them all. In Proc. IEEE Conf.
Visual Analytics Science and Technology, VAST (2011), pp. 91–
100. 2

[For10] FORSELL C.: A guide to scientific evaluation in informa-
tion visualization. In Proc. Int. Conf. Information Visualisation,
IV (2010), IEEE, pp. 162–169. 2

[GHJV95] GAMMA E., HELM R., JOHNSON R., VLISSIDES J.:
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman, 1995. 3, 8

[GL12] GOMEZ S., LAIDLAW D.: Modeling task performance
for a crowd of users from interaction histories. In Proc. SIGCHI
Conf. Human Factors in Computing Systems, CHI (2012), ACM,
pp. 2465–2468. 3

[HB10] HEER J., BOSTOCK M.: Crowdsourcing graphical per-
ception: using mechanical turk to assess visualization design. In
Proc. SIGCHI Conf. Human Factors in Computing Systems, CHI
(2010), ACM, pp. 203–212. 2

[HCL05] HEER J., CARD S. K., LANDAY J. A.: prefuse: a
toolkit for interactive information visualization. In Proc. SIGCHI
Conf. Human Factors in Computing Systems, CHI (2005), ACM,
pp. 421–430. 2

[HEF08] HENRY N., ELMQVIST N., FEKETE J.-D.: A method-
ological note on setting-up logging and replay mechanisms in In-
foVis systems. In Proc. Workshop BEyond time and errors: novel
evaLuation methods for Information Visualization at ACM CHI,
BELIV (2008). 3

[HMSA08] HEER J., MACKINLAY J. D., STOLTE C.,
AGRAWALA M.: Graphical histories for visualization: Sup-
porting analysis, communication, and evaluation. IEEE Trans.
Visualization and Computer Graphics 14 (2008), 1189–1196. 3

[JS10] JIN J., SZEKELY P.: Interactive querying of temporal data
using a comic strip metaphor. In Proc. IEEE Symp. Visual An-
alytics Science and Technology, VAST (2010), pp. 163–170. 2,
3

[KGS∗08] KIM J. H., GUNN D. V., SCHUH E., PHILLIPS B.,
PAGULAYAN R. J., WIXON D.: Tracking real-time user ex-
perience (TRUE): a comprehensive instrumentation solution for
complex systems. In Proc. SIGCHI Conf. Human Factors in
Computing Systems, CHI (2008), ACM, pp. 443–452. 3

[KKEM10] KEIM D., KOHLHAMMER J., ELLIS G., MANS-
MANN F. (Eds.): Mastering The Information Age – Solving Prob-
lems with Visual Analytics. Eurographics, 2010. 1

[LBI∗12] LAM H., BERTINI E., ISENBERG P., PLAISANT C.,

CARPENDALE S.: Empirical studies in information visualiza-
tion: Seven scenarios. IEEE Trans. Visualization and Computer
Graphics 18, 9 (2012), 1520–1536. 1, 2

[LFH10] LAZAR J., FENG J. H., HOCHHEISER H.: Research
Methods in Human-Computer Interaction. John Wiley & Sons,
2010. 2, 4, 6, 9

[MABL∗07] MACKAY W. E., APPERT C., BEAUDOUIN-LAFON
M., CHAPUIS O., DU Y., FEKETE J.-D., GUIARD Y.: Touch-
stone: exploratory design of experiments. In Proc. SIGCHI
Conf. Human Factors in Computing Systems, CHI (2007), ACM,
pp. 1425–1434. 2

[MSGB∗08] MARTINS S. B., SHAHAR Y., GOREN-BAR D.,
GALPERIN M., KAIZER H., BASSO L. V., MCNAUGHTON D.,
GOLDSTEIN M. K.: Evaluation of an architecture for intelligent
query and exploration of time-oriented clinical data. Artificial
Intelligence in Medicine 43 (2008), 17–34. 8

[MST12] MATHÔT S., SCHREIJ D., THEEUWES J.: OpenS-
esame: an open-source, graphical experiment builder for the so-
cial sciences. Behavior Research Methods 44 (2012), 314–324.
2

[Neu12] NEUBAUER B.: A Comparison of Static and Dynamic
Visualizations for Time-Oriented Data. Master’s thesis, Vienna
University of Technology, 2012. 7

[Nie94] NIELSEN J.: Usability inspection methods. In Conf.
Companion Human Factors in Computing Systems, CHI (1994),
ACM, pp. 413–414. 5

[Nor06] NORTH C.: Toward measuring visualization insight.
IEEE Comp. Graphics and Applications 26, 3 (2006), 6–9. 5

[OndL∗10] ORDÓÑEZ P., DESJARDINS M., LOMBARDI M.,
LEHMANN C. U., FACKLER J.: An animated multivariate visu-
alization for physiological and clinical data in the ICU. In Proc.
of Int. Health Informatics Symp. (2010), ACM, pp. 771–779. 8

[Pla04] PLAISANT C.: The challenge of information visualiza-
tion evaluation. In Proc. Conf. Advanced Visual Interfaces, AVI
(2004), ACM, pp. 109–116. 1, 2

[PWM∗12] POHL M., WILTNER S., MIKSCH S., AIGNER W.,
RIND A.: Analysing interactivity in information visualisation.
KI – Künstliche Intelligenz 26 (2012), 151–159. 6, 7, 8

[PWR∗11] POHL M., WILTNER S., RIND A., AIGNER W.,
MIKSCH S., TURIC T., DREXLER F.: Patient development at
a glance: An evaluation of a medical data visualization. In Proc.
IFIP Human-Computer Interaction, INTERACT, Part IV (2011),
Campos P., Graham N., Jorge J., Nunes N., Palanque P., Winckler
M., (Eds.), LNCS 6949, Springer, pp. 292–299. 8

[RPW∗07] RESTER M., POHL M., WILTNER S., HINUM K.,
MIKSCH S., POPOW C., OHMANN S.: Evaluating an InfoVis
technique using insight reports. In Proc. Int. Conf. Information
Visualization, IV (2007), IEEE, pp. 693–700. 3

[SM95] SOUKOREFF R. W., MACKENZIE I. S.: Generalized
fitts’ law model builder. In Conference Companion Human Fac-
tors in Computing Systems, CHI (1995), pp. 113–114. 2

[SvW08] SHRINIVASAN Y. B., VAN WIJK J. J.: Supporting
the analytical reasoning process in information visualization. In
Proc. SIGCHI Conf. Human Factors in Computing Systems, CHI
(2008), ACM, pp. 1237–1246. 3

[TC05] THOMAS J. J., COOK K. A.: Illuminating the Path: The
Research and Development Agenda for Visual Analytics. IEEE,
2005. 1

[YKSJ07] YI J. S., KANG Y. A., STASKO J. T., JACKO J. A.:
Toward a deeper understanding of the role of interaction in infor-
mation visualization. IEEE Trans. Visualization and Computer
Graphics 13, 6 (2007), 1224–1231. 8

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.


