
Problem Characterization and Abstraction for Visual
Analytics in Behavior-Based Malware Pattern Analysis

Markus Wagner, Wolfgang Aigner,
Alexander Rind

Institute of Creative\Media/Technologies
St. Pölten Univ. of Applied Sciences, Austria

<first name>.<last name>@fhstp.ac.at

Hermann Dornhackl, Konstantin Kadletz,
Robert Luh, Paul Tavolato
Institute of IT Security Research

St. Pölten Univ. of Applied Sciences, Austria
<first name>.<last name>@fhstp.ac.at

ABSTRACT
Behavior-based analysis of emerging malware families in-
volves finding suspicious patterns in large collections of ex-
ecution traces. This activity cannot be automated for pre-
viously unknown malware families and thus malware ana-
lysts would benefit greatly from integrating visual analytics
methods in their process. However existing approaches are
limited to fairly static representations of data and there is
no systematic characterization and abstraction of this prob-
lem domain. Therefore we performed a systematic literature
study, conducted a focus group as well as semi-structured
interviews with 10 malware analysts to elicit a problem ab-
straction along the lines of data, users, and tasks. The re-
quirements emerging from this work can serve as basis for
future design proposals to visual analytics-supported mal-
ware pattern analysis.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—User-centered design, Evaluation/methodology

Keywords
Evaluation, malicious software, malware analysis, problem
characterization and abstraction, visual analytics

1. INTRODUCTION
Due to the increasing threats from malicious software (mal-

ware), monitoring of vulnerable systems will become increas-
ingly important. This applies to networks, individual com-
puters, as well as mobile devices (e.g. [36, 44, 11]). For
this purpose, there are various approaches and techniques
available to detect or to capture malicious software as pre-
sented in Sect. 2 and 5. To overcome the limitations of static
signature-based approaches, behavior-based malware detec-
tion can be used [9]. Here, the dynamic behavior of software
is analyzed by logging execution traces of potentially mali-
cious code. On the one hand, such traces of dynamic soft-

c© The Authors 2014. This is the author’s version of the work. It is posted here
for our personal use. Not for redistribution. The definitive version was published
in Proceedings of the 2014 IEEE Workshop on Visualization for Cyber Security,
http://dx.doi.org/10.1145/2671491.2671498.

ware behavior can become very large very quickly, resulting
in tens of thousands of lines to be analyzed. Furthermore
large numbers of hitherto unknown malware samples emerge
every day and need to be triaged. Because of that and the
fact that manual analysis by domain experts is very cum-
bersome, automated data analysis methods are needed. In
order to automate this process as much as possible, pat-
terns of particular call sequences need to be specified and
categorized as being potentially harmful or harmless. These
patterns can then semi-automatically be detected and an-
alyzed in context. On the other hand, this process cannot
be automated completely as domain experts need to be in
the loop to identify, correct, and disambiguate intermediate
results. This combination of large amounts of data, complex
data analysis needs, and the combination of automated data
analysis with analytical reasoning by domain experts lends
itself very well to the notion of visual analytics [34, 15].

In our work, we follow the paradigm of problem-oriented
research, i.e., working with real users to solve their tasks [28].
To be able to support domain experts in their demanding
task of detecting and refining patterns of malicious behavior
in malware execution traces, it is imperative to perform a
thorough problem characterization and abstraction as a first
step. The main motivation is to analyze and characterize
the data to be dealt with as well as user requirements and
features needed for a malware detection system supported
by visual analytics methods.

In particular, we follow the nested model for visualization
design and validation as proposed by Munzner [23]. It is
a unified approach that structures visualization design into
four levels and combines these with appropriate validation
methods to mitigate threats to validity at each level. Start-
ing from the top, the levels are domain problem and data
characterization, operation and data type abstraction, visual
encoding and interaction design, and algorithm design. In
the paper at hand, we specifically focus on the two top lev-
els, problem characterization and abstraction. These two
steps are crucial in reaching a common language and un-
derstanding between domain experts and visualization re-
searchers, and the requirements gathered provide the basis
against which design proposals can be judged [28]. Abstract-
ing from the concrete domain vocabulary to the vocabulary
of visualization also helps to match known visualization so-
lutions from other domains to the problem at hand and vice
versa. Moreover, disclosing problem characterization and
abstractions for particular domain problems serves as valu-
able basis for researchers other than those who have con-
ducted the research. Other researchers might also propose



Different 
Tools

Sample
(exec. code)

ClusterTrace
Task

Selection of
relevant rules

Cluster-Grammar
(generated grammar of the 

combined Traces of a Cluster)

Malware 
execution in 

the laboratory

Clustering 
with Malheur

Pattern search 
with Sequitur 

algorithm

Visual Analytics support for 
domain experts

0110001
1001110
1011001
1011010
1010110

0110001
1111010
1101011
0001101
0101010

Task-Grammar

Database
(stores new and 

well know rules)

Figure 1: Different stages of a behavior-based malware detection approach as identified in focus group sessions
with IT-security experts. The red area shows the part to be supported with visual analytics methods.

different solutions based on this groundwork. As shown in
the survey by Lam et al. [17], such contributions are still
very rare. We aim for providing such a contribution in the
domain of behavior-based malware pattern analysis.

This paper is organized as follows: Sect. 2 provides back-
ground knowledge about the work of our collaborators. In
Sect. 3 we present related work in the fields of malware anal-
ysis and problem-oriented visual analytics research. Fur-
thermore in Sect. 4 we describe the research methods for the
results which we present in Sect. 5. At the end of the paper
we summarize and abstract the domain problem of malware
pattern analysis along the lines of data, users, and tasks for
visual analytics-supported systems, which is followed by the
conclusion and future work in Sect. 7.

2. BACKGROUND
Malware is undoubtedly one of today’s biggest threats to

the Confidentiality/Integrity/Availability (CIA) triangle of
information security [33]. Malware has become a common
tool in digital theft, corporate and national espionage, spam
distribution and attacks on infrastructure availability.

Behavior-based Malware Recognition: Malicious be-
havior in software is identified through static or dynamic
analysis [9]. On the one hand, when statically analyzing a
possibly malicious software sample, the binary file is usually
disassembled and dissected function by function. Dynamic
analysis, on the other hand, focuses on the sample’s behav-
ior [9]: The file is executed on a test system and its activity
is observed and recorded. Both approaches yield patterns
or rules that are later used for detection and classification
of malicious software.

Current malware detection/classification commonly uses
a signature-based approach: Known malware is described
by its syntactic characteristics – mostly bit strings or simple
patterns (e.g., defined by regular expressions). Signature-
based detection has several shortcomings [5]: Firstly, obfus-
cation techniques commonly utilize polymorphic or meta-
morphic mutation to generate an ever-growing number of
malware variants that are different in appearance but func-
tionally identical. Secondly, signature-based techniques can
only detect malware that has already been identified and an-
alyzed; new species or hitherto unknown variants are gener-
ally overlooked. An alternative to signature-based detection

is the so-called behavior-based approach. Here, a sample’s
activity is analyzed during execution using dynamic analysis
techniques. Afterwards, a previously defined set of rules is
applied to the generated report in order to decide whether
the sample’s behavior is malicious or not. Behavioral anal-
ysis of suspicious code samples is, despite the disadvantage
in performance, a promising approach to detecting and pre-
classifying malware: a specific piece of malware is not char-
acterized by its syntactic appearance, but rather by its dy-
namic behavior – in whatever disguise it might appear.

This paper focusses on the visualization of the pattern
extraction and recognition process used in a research project
on formal definition of malware behavior [8].

Pattern Extraction Process: The process of extract-
ing relevant behavior patterns is split into several stages
(see Fig. 1). Initially, the sample under scrutiny is executed
inside an isolated, partially virtualized laboratory environ-
ment. Tools such as APImon1 and Procmon2 monitor all
activities and generate a report (i.e. trace) of system and
API calls sequentially invoked by the sample. These traces
are then clustered using Malheur, an automated behavior
analysis and classification tool developed by Rieck et al..3

In the next step, all traces within a cluster are concatenated
and processed using the Sequitur algorithm [24]. Originally
developed for file compression, Sequitur automatically re-
places frequent patterns with short symbols, effectively gen-
erating a context-free grammar in the process, referred to
as cluster-grammar. A human analyst must then assess this
grammar and extract rules describing potentially relevant
behavior.

Here is where visualization comes in: The selection of rel-
evant rules relies heavily on the accessibility and readability
of the extracted information.

Once a relevant rule has been identified, it is stored in
the pattern database and assigned to a task of the malicious
behavior schema [8]. The grammar of the abstracted tasks
therein, i.e. the task-grammar, is the foundation for the
automated generation of parsers that are ultimately used to
detect malicious behavior in newly submitted traces.

1
http://www.rohitab.com/apimonitor, accessed July 07, 2014.

2
http://technet.microsoft.com/en-us/sysinternals/bb896645,

accessed July 07, 2014.
3
http://www.mlsec.org/malheur/, accessed July 07, 2014.

http://www.rohitab.com/apimonitor
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://www.mlsec.org/malheur/


3. RELATED WORK
Currently, problem-oriented research is underrepresented

in visualization literature – in particular works on prob-
lem characterization and abstraction are rare [17, 28], even
though these are essential for design and implementation of
suitable visual analytics solutions. Therefore, we will first
present some notable examples of problem characterization
papers in other domains and then focus on visualization
work for malware analysis. Visualization techniques from
this area will be discussed in more detail in the literature
research (Sect. 5.1).

Problem Characterization and Abstraction: Sedl-
mair et al. [26] studied the daily routines of automotive engi-
neers and their tool support using interviews and task obser-
vation. After analysis along different collaboration settings,
their main contributions are system requirements for multi-
ple display environments. The MizBee design study [21], set
in comparative genomics, starts with the characterization of
questions asked in this problem domain as the first of four
contributions. For this, they conducted interviews with two
expert biologists, who work in the area. Tory et al. [35]
conducted a field study in the domain of building design to
investigate the current use of visualization in meetings. The
design requirements for RelEx [27] were based on detailed
characterization of data, tasks, and existing tools, which
were obtained using literature research, contextual observa-
tion, semi-structured interviews, and a focus group. Fink
et al. [10] articulated a set of design principles for visualiza-
tion systems in cyber security but focused on high-resolution
display working environments for security analysts. Addi-
tionally they presented prototypes according to these de-
sign principles. Goodall et al. [12] conducted contextual
interviews to gain understanding of the intrusion detection
workflow of security analysts. Additionally they proposed a
three-phased model where tasks could be decoupled by nec-
essary know-how. This way organizations get more flexibil-
ity in training new analysts. However, none of these studies
tackled behavior-based malware pattern analysis.

Malware Analysis and Visualization: Lee et al. [20]
made a good case for visualization in malware analysis, which
they propose is needed to recognize and extract unseen mal-
ware patterns. The survey by Shiravi et al. [31] described
and categorized 38 different network security visualization
systems, which they divided into 5 different classes of use-
cases. The definition of the classes was based on the be-
havior of the malicious activities, which could be detected
with these tools. Some of the presented approaches also sup-
ported methods for interactive data exploration. In contrast
to this survey, we are looking at the behavior-based malware
analysis on system and API call level. Likewise, a part of
Conti’s book [7] is dedicated to malware analysis. However,
all of the mentioned approaches are related to visualization
of network traffic and not of malware execution traces. Ap-
proaches for malware detection in general are covered in the
surveys of Egele et al. [9] and Bazrafshan et al. [3].

Albeit some work has been performed in visualization for
malware detection, it can be recognized that so far, no work
has been published on performing problem characterization
and abstraction in the domain of malware analysis from a
visual analytics perspective. To close this gap and provide
a basis for further designers of visual analytics systems in
this domain, we chose to investigate it using methods from
human-computer interaction [19, 30] as described next.

4. METHOD
To ensure a knowledgeable characterization and abstrac-

tion of malware pattern analysis along the triangle of data,
users, and tasks [22], we followed a threefold approach con-
sisting of systematic literature research, a focus group [19]
and semi-structured interviews with domain experts [19].

The methods applied in our research are related to cog-
nitive task analysis (CTA) [39]. Our threefold approach in-
cludes the classification families 1 (observations and inter-
views) and 2 (process tracing) of Wei and Salvendy’s clas-
sification of CTA methods [39]. For the observations and
process tracings we are using example views during the in-
terviews.

4.1 Literature Research
In the first step, we used different keyword combinations

(e.g. malware, malicious software, visual analytics, visu-
alization, time-oriented data, security, etc.). In the sec-
ond step, we searched for the authors of the currently best
matching papers and combined them with the currently best
matching keywords of the previous research. Based on this
search strategy, it was possible to find 26 different scientific
publications on malware analysis for IT-security on local
hosts. In order to refine our results, we investigated all the
abstracts and conclusions and removed less appropriate pa-
pers. This lead to a number of 6 highly relevant papers and
5 tools that could be identified.

4.2 Focus Group
The focus group consisted of 7 people: 4 IT-security ex-

perts who are working in a research project on malware
recognition via formal description of the behavior (Malware-
Def team) and 3 visual analytics experts. The iterations of
the focus group meetings were established on a monthly ba-
sis with a duration of approximately 3 hours (currently 4
sessions). The results of each meeting were documented by
written notes. The main aim was to find out:
• Which datasets are useful and interesting to visualize?
• Which data structures will be processed?
• What are possible visualization scenarios?
• How could expert knowledge be extracted or included?

In addition to these basic questions we matched the do-
main-specific vocabulary and established mutual understand-
ing. Further, we managed to create a bird’s-eye view for a
better understanding of the different analysis steps of be-
havior-based malicious software detection (see Fig. 1).

4.3 Interviews
Based on the results of the focus group, we developed

interview guidelines for semi-structured interview sessions.
Study Design and Material: The interviews were di-

vided into two parts: brainstorming and example view ex-
ploration. The first part was structured along the following
main questions related to behavior-based malware detection:
• What is the workflow of analysis?
• Which tools are used?
• How is data collected and analyzed?
• Which data records are interesting?
• What will be done with the discovered patterns?
• Are the data records currently graphically evaluated?
• Are there any visualization tools available for this field?

After the brainstorming part each person was exposed
to 6 visualization techniques (Arc Diagram [37], Multiple



View [13], OutFlow [41], Wordtree [38], Parallel Tag Cloud [6]
and Pixel-Oriented Visualization [14]). We selected these
visualization techniques after our preliminary problem un-
derstanding from the focus group sessions for being poten-
tially applicable in the application domain and covering a
broad range of different options for graphical representa-
tions. With these views we aimed to get answers for the
following questions:
• Is this or a similar visualization method already known?
• Could you read information out of this visualization?
• Is this visualization method usable for your work?

The example views were printed on paper and the same
order was used for each person. See our supplementary ma-
terial for the complete interview guideline used (in German)
as well as the shown example views.4

Participants: We selected a group of 10 IT-security ex-
perts to participate in the interview sessions. All the inter-
viewed persons are working in the field of malware detection
or in a related field of IT-security at three different Austrian
companies. The interviewed group includes 2 female and 8
male participants (see Table 1 for further details). Four of
the interview partners were also members of the focus group.

Person Organi-
zation

Age Know-
ledge

Gender Edu-
cation

P1 R1 50-59 expert m PhD

P2 R1 30-39 expert m MSc

P3 R1 20-29 expert m MSc

P4 R1 20-29 expert m MSc

P5 C1 20-29 expert m MSc

P6 C1 20-29 expert m MSc

P7 C2 20-29 expert f MSc

P8 R2 30-39 basic f MSc

P9 R2 30-39 basic m BSc

P10 R2 30-39 basic m MSc

Table 1: Data of the interviewed persons. All the
persons of R1 are related to the focus group. (R :=
research group, C := company)

Procedure: Each interview was scheduled for approxi-
mately one hour and was documented by audio recording
and notes. The results of the interview sessions were com-
bined and evaluated for the result presentation in Sect. 5.

5. RESULT
In this section we present the results of the literature re-

search followed by the results of the focus group and the
semi-structured interviews.

5.1 Literature Research
In addition to the previously presented surveys in Sect. 3,

we examined 5 existing approaches from 6 papers from the
perspective of visual analytics (based on Shneiderman’s Vi-
sual Information Seeking Mantra [32]).

Yao et al. [43] describe the design of an interactive frame-
work for automated trust negotiation (ATN). With ATN,
it is possible for the user to show credentials, policies and
to analyze the relations of negotiated components. These
sessions used a trust target graph (TTG) which is built up
from the two negotiated ATN sessions. For the visualization
of the ATN session, a node-link diagram was used.
4
http://mc.fhstp.ac.at/supp/VizSec14

Willems et al. [40] describe CWSandbox and a combination
of behavior-based malware detection with API hooking, and
DLL injection. Furthermore Trinius et al. [36] created a
parameterized abstraction of detailed behaviors of malicious
software based on CWSandbox. For the visualization of the
malware they used two different visualization methods. On
the one hand they used treemaps and on the other hand
they used thread graphs [42].

Shabtai et al. [29] report that visualization of raw data
did not make sense for the experts. To improve results for
the visualization they implemented an intelligent visualiza-
tion interface called VISITORS which was an extension to
the KNAVE-II tool applied earlier mostly in the medical
domain. The tools contained the following features: tempo-
ral data abstraction, knowledge-based interpretation, sum-
mary of data, queries, visualization, and exploration of a
large amount of time-oriented data. Furthermore the sys-
tem includes a signal-concept visualization over time (using
divided/stacked bar charts and index charts), a visualization
for multiple concepts’ association over time (using a sort of
parallel coordinates), and indented lists.

Yee et al. [44] worked on reverse engineering of a binary
executable by transforming a stream of bytes of a program
into a sequence of machine instructions. The static and the
dynamic debugger system interacted with a graph visualiza-
tion system called Mini-Graph to visualize the analysis data
of the targeted executable file. Furthermore it contained a
tabular text visualization area which shows different data
(e.g. address, hex, comments). This way the program flow
of the targeted system could be reconstructed and it was
easier to detect fragments of malicious instructions.

The VERA approach introduced by Quist and Librock [25]
uses dynamic analysis to visualize the flow of a program.
The visualization system uses a 2D representation of the
data, which was transformed into a 3D space. They claim
that a 2D representation is very useful for a quick initial
analysis, but the 3D view provides a convincing view of the
data by offering better introspection and zooming features
for the code. With VERA, the authors provided a navigable
tool to explore the data (panning, zooming and filtering).
Based on a user study, they showed that the system is very
helpful for them and for (non)experienced system users.

Summary
All the presented tools operated locally and use 2D visual-
izations to present the data. Only VERA uses 2D and 3D
visualizations for the data representation. ATN, CWSand-
box, and Mini-Graph visualize malware data using node-
link diagrams. Furthermore, the CWSandbox tool also uses
treemaps. Only VISITORS uses bar charts for the visualiza-
tion and combines this with index charts and parallel coor-
dinates. It can be seen that most utilized visualization tech-
niques are node-link diagrams or graphs. Particularly, in-
teractivity is rather restricted in the mentioned approaches.
CWSandbox does not support any kind of interaction for
data exploration. All the other tools provide basic inter-
action features, but only VERA and VISITORS are more
elaborated. VERA supports interaction, zooming, filtering,
and panning functionalities. The VISITORS tool supports
zooming, filtering and details on demand functions. Thus, it
became apparent that visual analytics methods are less com-
mon in currently available approaches for malware analysis.

http://mc.fhstp.ac.at/supp/VizSec14


5.2 Focus Group
In the first meeting, the visual analytics experts and the

IT-security experts established a common understanding of
their respective fields of work and their objectives. In sub-
sequent meetings the technical vocabulary has been devel-
oped and clarified. Furthermore, we iteratively worked on
discussing the four questions as formulated in Sect. 4. The
data to work with is generated automatically (see Fig. 1 and
Sect. 2). One possible visualization scenario consists of the
Sequitur [24] file. It should be possible to select one call
sequence to see if this is a known pattern or not. Further-
more it should be possible to store new patterns as expert
knowledge in the system.

Rule Count Sequence

27 → 3311 3329 8 RegOpenKeyW RtlEnterCriticalSection Rt...

28 → 40 41 5 RegQueryValueExW RtlInitUnicodeString...

29 → RtlNtSt... 76 RtlNtStatusToDosError

... ... ...

Table 2: Example of a Sequitur cluster grammar file.

Table 2 shows an excerpt of a grammar as produced by the
Sequitur algorithm: Column 1 contains the grammar rules
with its left and right part separated by →. The right side
very often consists of 2 non-terminals, but it is not limited
and actually can go up to 10 or more. Numbers simplify non-
terminals; terminals represent system and API calls and the
names of the calls are used. Column 2 (“Count”) gives the
number of use of the rule within the derivation of all the
traces of one cluster stringed together. Column 3 gives the
terminal string that is finally derived by this rule (during
derivation).

5.3 Interviews
To analyze the requirements for a future visual analyt-

ics tool, we conducted 10 semi-structured interviews as de-
scribed in Sect. 4.

Brainstorming
What is the workflow of analysis? As a first result it
became apparent that the workflow depends on whether you
are working as an anti-virus manufacturer or as a malware
analyst. From the view of a malware analyst, the best choice
of action is to perform a combination of static and dynamic
analysis. The basic approach is to execute malware samples
in an isolated area on virtual hosts and/or on native hosts
for analysis and pattern finding (testing on native host takes
more time because reinstalling of the machine after the test
is more time consuming). Regarding used operating sys-
tems, the participants reported that most of the time their
malware samples will be executed on all currently used Win-
dows operating systems (Windows XP - Windows 8.1) and
both x86 and x64 architectures. This is done to determine
the sample’s target system. All the activities of the malware
samples are logged by a wide range of tools.

Which tools are used? For report generation, the re-
search group R1 primarily utilized APImon and Procmon.
T3sim (proprietary software of IKARUS Security Software),
Joe Sandbox5 and FireEye6 were occasionally used to com-
5
http://www.joesecurity.org/joe-security-products, accessed July

14, 2014.
6
http://www.fireeye.com/, accessed July 14, 2014.

plement specific analyses. Furthermore, they use Malheur to
cluster reports generated by the other tools. P7 used API-
mon, Procmon, Cuckoo Sandbox,7 IDAPro,8 FireEye and
Joe Sandbox. She emphasized that: “IDAPro is the Swiss
Army Knife of a malware analyst.” The members of C1 use
IDAPro, Anubis (formerly TTAnalyze) [2] and some differ-
ent sandbox tools that were not specifically named. Addi-
tionally, R2 reported to work with IDAPro and Procmon as
well.

How is data collected and analyzed? Our interview
partners explained that after the application of one of the
tools, the generated files have to be evaluated by hand. This
is a very labor intensive task because each file contains sev-
eral thousand lines. Additionally, not only the execution of
malware samples is important, but also the examination of
the final state of the machine on which a malware sample
was executed.

Which data records are interesting? The intervie-
wees gave quite a number of different examples of interesting
data records. Specifically, it was named that when examin-
ing the static part of the data, you are able to see signa-
tures, hashes, and strings (parts of the program code which
could be identified as a collection of ASCII symbols). It has
also been mentioned, that the network communication of
a program is very interesting: information like where does
the program connect to?, upload?, download? can be an-
swered by exploring this data. A further important finding
is that it is possible that malware changes its activities at
runtime. This means that malware could contain encrypted
code which will be decrypted at runtime. In addition to the
program activities, our interview partners mentioned that it
is very interesting to see whether a program registers itself
with one of the autostart lists of the operating system.

What will be done with the discovered patterns?
R1 reported that all the patterns he finds will be compared
with the currently stored patterns in the database. Further-
more the semantic of a found pattern needs to be manually
associated to a number of predefined categories. All the
other persons explained that they do not store found pat-
terns, but only report them if there is enough time. Accord-
ing to our interview partners, there is no tool that allows
for storing found patterns for future evaluations. Finally an
interesting insight was that all interviewed experts had their
very own approaches toward pattern recognition that made
it difficult to consolidate them to a more generalized view.

Are the data records currently graphically and vi-
sually evaluated? The interview partners reported that
there are some visualization tools available but they often
did not fit their needs. One of the tools mentioned is Proc-
dot9 which is a visualization tool for the traces/data gen-
erated by Procmon. Additionally, IDAPro generates a call
graph to visualize the program calls of the analyzed malware
sample. The tool Anubis colors the results green or red in
addition if they are malicious or not.

Example Views
Arc Diagram: The feedback of the interviewees implies
that this visualization technique is quite conceivable for pat-
tern recognition and tamper detection for system and API

7
http://www.cuckoosandbox.org/, accessed July 14, 2014.

8
https://www.hex-rays.com/products/ida/, accessed July 14, 2014.

9
http://www.cert.at/downloads/software/procdot.html, accessed

July 14, 2014.

http://www.joesecurity.org/joe-security-products
http://www.fireeye.com/
http://www.cuckoosandbox.org/
https://www.hex-rays.com/products/ida/
http://www.cert.at/downloads/software/procdot.html


calls. Similarly, it has been mentioned to be well suited for
grammar and database visualization. By means of the arc
thickness and diameter of the circle, the frequency and the
intensity of the connection could be shown. In addition,
color differentiation is also very important and helpful to
distinguish the malware and the system and API call types.
Furthermore, it was stated that this visualization technique
could be highly suitable for the visualization of temporal
processing but also that it looks a bit unstructured. One
possible problem identified could be the scalability of the
visualization technique with the amounts of data to be dealt
with in malware analysis.

Multiple Views: The example we’ve used consisted of
an overview of the data using bar charts and text on the left
and a detailed view of a selected data entry on the right.
This visualization method had a very high recognition fac-
tor by displaying the details of the selected data on the right
according to other approaches. The interviewed experts sug-
gested that this method could be well suited to represent
behavior scores on the left and the sample’s inherent API
and system calls, including frequency of occurrence on the
right. Additionally this visualization method was said to be
potentially well-suited for the visualization of the Sequitur
results and for comparing several different samples on sys-
tem and API call level (e.g. on the left side there could be
the sum of the same system and API calls and on the right
side, in the detail view, one could compare them).

OutFlow: OutFlow was found to be applicable to vi-
sualize various system and API calls which yield the same
results. Malignant combinations could be highlighted us-
ing color and after each intermediate step an assessment of
the malignancy of the samples in percent could be speci-
fied. For example there are several different combinations
of system and API calls to add a program to a system’s
auto start list/area/directory. As an extension to recognize
loops, the interview partners suggested back links. Further-
more, OutFlow was identified for opening up the possibility
to recognize unnecessary or more importantly, obfuscated
code trying to mask the true intent of the sample. This
method could also be used to visualize different execution
threads and their dependencies (e.g. file-handles).

Wordtree: When discussing Wordtree, our interview sub-
jects suggested that using a color differentiation of various
malware families would be very helpful. It was mentioned
that the use of different font sizes to represent the frequency
of concurrency is not as important because a uniquely oc-
curring system or API call combination is sufficient to wreak
considerable damage. Furthermore, this technique was said
to be potentially helpful for a stepwise categorization by vi-
sualizing subdivisions in order to specify the focus of the ex-
ecuted sample (e.g. network focused, calculation focused).
Additionally, it seems to be well-suited for the visualiza-
tion of system and API call sequences and possibly for the
database structure, too. A good expansion option would be
to lead the individual strands back together to locate pat-
terns with the same result.

Parallel Tag Cloud: Considering this method it was
mentioned that it would be useful for the side-by-side com-
parison of various samples. It would be interesting to cor-
relate system and API calls to specific malware families ore
to search for calls which are used by different malware fam-
ilies. However, it would be important to put the focus on
the connections between the nodes rather than on the text

size. R2 also put forward a word of caution: “It seems as if
only the most common elements of the data to be compared
are displayed - this could be misleading.”

Pixel-Oriented Visualization: On the one hand, many
of the interviewed experts mentioned that this technique
would be well-suited to show data from different samples for
comparison and for comparisons of reports over time (e.g.
the occurrence of different types of malware over a time pe-
riod). Additionally this method could be used for the visu-
alization of disk partitions or encrypted data in the samples.
On the other hand, the technique was also critically viewed,
as for example by R1: “This visualization technique is ill-
suited for the group’s purpose. It rather seems to be handy
for certain statistical evaluations.”

Combinations: Most of the interviewees indicated that a
combination of multiple views, Arc Diagram, and Wordtree
would be preferred, followed by OutFlow and pixel-oriented
visualization. In addition P3, P4 and P6 suggested to rotate
the Arc Diagram by 90◦. The Parallel Tag Cloud, in turn,
has been described as the least useful solution.

6. DATA–USERS–TASKS ANALYSIS
Above we have characterized the domain problem of be-

havior-based malware analysis using literature research, fo-
cus group meetings, and semi-structured interviews. Next,
we summarize and abstract the domain problem using the
Data–Users–Tasks design triangle [22]. This high-level frame-
work is structured around three questions:
• What kinds of data are the users working with? (data)
• Who are the users of the VA solution(s)? (users)
• What are the (general) tasks of the users? (tasks)

Based on the answers to these questions, designers of VA
methods can find or design appropriate visual representa-
tions of the data along with appropriate analysis and inter-
action methods to support a domain problem.

Data: In dynamic analysis malware analysts work with
collections of traces, which are sequences of relevant system
or API calls. In addition call parameters and return values
of the calls can be exposed. However, they do not exam-
ine these traces directly because of the large data volume.
Our collaborators uses the Sequitur algorithm [24] to gener-
ate context-free grammars from the clusters of traces, which
they refer to as cluster grammars (Fig. 1). Each grammar
describes the derivation of a terminal string (all traces of
one cluster stringed together). Each node of the parse tree
has a rule of the grammar associated with it and derives a
sub-sequence of terminal symbols. Table 2 shows examples
of such rules along with the number of occurrences of this
rule in the parse tree and the terminal sub-sequence derived
from this rule. Additionally, the distribution of rules over
the traces in a cluster is available. For example a cluster
of 20 malware samples might yield a total trace of 20,000
calls and a cluster grammar of 1,000 rules. These data are
currently stored in a database together with metadata for
system and API calls and a taxonomy of malware behaviors.
Furthermore the database contains call sequences described
by rules that have already been assigned to a certain mali-
cious behavior, referred to as task grammar.

The system and API calls have a value on a nominal
scale with a cardinality greater than 100. (Sub-)sequences
of calls are time-oriented data on an ordinal time scale with
instants as time primitives [1]. The parse tree for each clus-
ter is a graph with rules associated to nodes (except termi-



1

154

46 47 48

RegOpenKeyW NtOpenKey RegSetValueW NtSetValueKey RegCloseKey NtClose

Figure 2: Simplified example of a parse tree.

nal nodes), the edges representing the expansion of the rule
(Fig. 2). The parse tree of a cluster can be modeled as a
simple directed acyclic graph [16] (i.e. a tree). The interme-
diate nodes are non-terminals of the grammar represented
by a number and the end nodes are terminal symbols of the
grammar represented by system calls (see Fig. 2). Of main
interest is the number of reoccurrences of a non-terminal
and their locations. Alternatively, the cluster grammar can
be modeled as a network with rules as nodes and their com-
position as edges. The underlying graph is simple, directed,
acyclic, and usually not planar [16]. Node attributes are pri-
marily call sequences or single calls and quantitative data
such as occurrence counts over traces. There are no edge
attributes.

Users: Malware analysis is performed by domain experts,
malware analysts. These users have a strong computing
background – typically a university degree in computer sci-
ence or IT security. They command background knowledge
about system and API calls, malware vectors, and a partic-
ular intuition how harmless calls can combine to malicious
behavior. The users are comfortable with combining a range
of different tools such as command line, text editor, and ad-
hoc developed software but have no dedicated experience
with Visual Analytics solutions. Yet, they are willing to fa-
miliarize themselves with a new tool because they need to
perform malware analysis often and for extended periods.
However, malware analysis is a specialist activity, so there
will be relatively few users.

Tasks: The primary task of malware analysts is to se-
lect relevant rules from the cluster grammar, categorize them
by a malicious behavior task, and store them with the task
grammar (i.e. database). Secondary tasks include the man-
ual adaptation and fine-tuning of rules found in the clus-
ter grammar, comparing rules from the cluster grammar
to rules already existing in the task grammar, and creat-
ing new rules manually either directly from traces or from
their background knowledge/literature. Finding relevant of
rules is an ill-defined problem and depends on many factors,
in particular occurrence count, distribution over traces, and
background knowledge of the involved system and API calls.

Overall, malware analysis is pattern discovery [18], i.e. dis-
covering relevant call sequences in traces. The primary task
can be abstracted [4] as producing rules for the task gram-
mar. For this, users must first identify rules by exploring the
cluster grammars, browsing by particular occurrence counts,
with special focus on system or API calls.

7. CONCLUSION AND FUTURE WORK
Based on the performed literature research, focus group

meetings, and semi-structured interviews we formulated a
problem characterization and analysis. The interviewees
enumerated many tools for the different work steps depend-
ing on the focus of their work/research. Furthermore they

analyze the collected data usually manually because the cur-
rently available tools do not cover all the needs of the inter-
viewees. By means of the six presented example views it was
possible to identify preferred visual representation combina-
tions (e.g. multiple view + arc diagram + word tree).

Summarizing by means of data–users–tasks, we can ab-
stract the parse tree of a cluster grammar as a simple di-
rected acyclic graph with nominal data attributed to the
nodes. The users of the future system will be malware ana-
lysts (domain experts). Furthermore the main tasks are to
select different rules, categorize them by their task and store
them in the database as well as manual adaption and/or
tuning of found rules.

Unlike the existing work in IT-security, this problem char-
acterization and abstraction focused on malware pattern
analysis and constitutes a solid base for future work. It
allows visual analytics designers to create and judge design
proposals for future solutions and it helps to identify similar-
ities to other domains and their visual analytics solutions.
Finally, it also aids domain experts to reflect about their
own work. While designing such visual analytics solutions
domain experts should of course stay involved in a user-
centered design process [30]. We intend to pursue this path
in collaboration with the members of the focus group.

8. ACKNOWLEDGMENT
This work was supported by the Austrian Science Fund

(FWF) via the KAVA-Time project no. P25489 and the
Austrian Federal Ministry for Transport, Innovation and
Technology via KIRAS project no. 836264. Many thanks
to C. Niederer and M. Zeppelzauer for their feedback.

9. REFERENCES
[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski.

Visualization of Time-Oriented Data. Springer, 2011.

[2] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In 15th Ann. Conf. Europ.
Inst. Computer Antivirus Research, EICAR, 2006.

[3] Z. Bazrafshan, H. Hashemi, S. Fard, and A. Hamzeh.
A survey on heuristic malware detection techniques.
In Conf. on Info. and Knowledge Technology, pages
113–120, 2013.

[4] M. Brehmer and T. Munzner. A multi-level typology
of abstract visualization tasks. TVCG,
19(12):2376–2385, 2013.

[5] M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In India Software
Eng. Conf., pages 5–14. ACM, 2008.

[6] C. Collins, F. Viegas, and M. Wattenberg. Parallel tag
clouds to explore and analyze faceted text corpora. In
Symp. on Visual Analytics Science and Technology,
pages 91–98, 2009.

[7] G. Conti. Security data visualization: graphical
techniques for network analysis. No Starch Press, 2007.

[8] H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato.
Malicious behavior patterns. In IEEE Int. Symp. on
Service Oriented System Eng., pages 384–389, 2014.

[9] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A
survey on automated dynamic malware-analysis
techniques and tools. ACM Comp. Surv.,
44(2):6:1–6:42, 2008.



[10] G. Fink, C. North, A. Endert, and S. Rose.
Visualizing cyber security: Usable workspaces. In Int.
Workshop on Vis. for Cyber Sec., pages 45–56, 2009.

[11] E. Gelenbe, G. Gorbil, D. Tzovaras, S. Liebergeld,
D. Garcia, M. Baltatu, and G. Lyberopoulos. Security
for smart mobile networks: The NEMESYS approach.
In IEEE Global High Tech Congr. on Electronics,
pages 63–69, 2013.

[12] J. R. Goodall, A. Komlodi, and W. G. Lutters. The
work of intrusion detection: Rethinking the role of
security analysts. In Proc. of the 10th Americas Conf.
on Info. Systems, pages 1421–1427, NY, 2004.

[13] D. Gotz, H. Stavropoulos, J. Sun, and F. Wang.
ICDA: A platform for intelligent care delivery
analytics. AMIA Annual Symp. Proceedings,
2012:264–273, 2012.

[14] D. Keim. Designing pixel-oriented visualization
techniques: theory and applications. TVCG,
6(1):59–78, 2000.

[15] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann,
editors. Mastering the information age: solving
problems with visual analytics. Eurographics, 2010.

[16] A. Kerren, H. C. Purchase, and M. O. Ward, editors.
Multivariate Network Visualization. LNCS 8380.
Springer, Cham, 2014.

[17] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and
S. Carpendale. Empirical studies in information
visualization: Seven scenarios. TVCG,
18(9):1520–1536, 2012.

[18] S. Laxman and P. S. Sastry. A survey of temporal
data mining. Sadhana, 31(2):173–198, 2006.

[19] J. Lazar, J. H. Feng, and H. Hochheiser. Research
Methods in Human-Computer Interaction. Wiley, 2010.

[20] D. Lee, I. S. Song, K. Kim, and J.-h. Jeong. A study
on malicious codes pattern analysis using
visualization. In Int. Conf. on Info. Science and
Applications, pages 1–5, 2011.

[21] M. Meyer, T. Munzner, and H. Pfister. MizBee: A
multiscale synteny browser. TVCG, 15(6):897–904,
2009.

[22] S. Miksch and W. Aigner. A matter of time: Applying
a data-users-tasks design triangle to visual analytics of
time-oriented data. Computers & Graphics,
38:286–290, 2014.

[23] T. Munzner. A nested model for visualization design
and validation. TVCG, 15(6):921–928, 2009.

[24] C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time
algorithm. J. Artif. Int. Res., 7(1):67–82, 1997.

[25] D. Quist and L. Liebrock. Visualizing compiled
executables for malware analysis. In Int. Workshop on
Vis. for Cyber Sec., pages 27–32, 2009.

[26] M. Sedlmair, D. Baur, S. Boring, P. Isenberg,
M. Jurmu, and A. Butz. Requirements for a MDE
system to support collaborative in-car communication
diagnostics. In Workshop on Beyond the Laboratory:
Supporting Authentic Collaboration with Multiple
Displays, 2008.

[27] M. Sedlmair, A. Frank, T. Munzner, and A. Butz.
RelEx: Visualization for actively changing overlay
network specifications. TVCG, 18(12):2729–2738,

2012.

[28] M. Sedlmair, M. Meyer, and T. Munzner. Design
study methodology: Reflections from the trenches and
the stacks. TVCG, 18(12):2431–2440, 2012.

[29] A. Shabtai, D. Klimov, Y. Shahar, and Y. Elovici. An
intelligent, interactive tool for exploration and
visualization of time-oriented security data. In Int.
Workshop Vis. Comp. Sec., pages 15–22. ACM, 2006.

[30] H. Sharp, Y. Rogers, and J. Preece. Interaction
Design: Beyond Human-Computer Interaction. John
Wiley & Sons, 2nd edition, 2007.

[31] H. Shiravi, A. Shiravi, and A. Ghorbani. A survey of
visualization systems for network security. TVCG,
18(8):1313–1329, 2012.

[32] B. Shneiderman. The eyes have it: a task by data type
taxonomy for information visualizations. In IEEE
Symp. on Visual Languages, pages 336–343, 1996.

[33] G. Stoneburner, A. Y. Goguen, and A. Feringa. SP
800-30. risk management guide for information
technology systems. Technical report, NIST, 2002.

[34] J. J. Thomas and K. A. Cook. Illuminating the path:
The research and development agenda for visual
analytics. IEEE Comp. Society Press, 2005.

[35] M. Tory and S. Staub-French. Qualitative analysis of
visualization: A building design field study. In Proc.
Workshop BEyond Time and Errors: Novel
evaLuation Methods for Information Visualization,
pages 7:1–7:8. ACM, 2008.

[36] P. Trinius, T. Holz, J. Gobel, and F. Freiling. Visual
analysis of malware behavior using treemaps and
thread graphs. In Int. Workshop on Vis. for Cyber
Sec., pages 33–38, 2009.

[37] M. Wattenberg. Arc diagrams: Visualizing structure
in strings. In Proc. IEEE Symp. Information
Visualization (InfoVis), pages 110–116, 2002.

[38] M. Wattenberg and F. Viegas. The word tree, an
interactive visual concordance. TVCG,
14(6):1221–1228, 2008.

[39] J. Wei and G. Salvendy. The cognitive task analysis
methods for job and task design: review and
reappraisal. Behaviour & Information Technology,
23(4):273–299, 2004.

[40] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
CWSandbox. IEEE Sec. Privacy, 5(2):32–39, 2007.

[41] K. Wongsuphasawat and D. Gotz. Outflow:
Visualizing patient flow by symptoms and outcome. In
IEEE VisWeek Workshop on Visual Analytics in
Healthcare, Providence, Rhode Island, USA, 2011.

[42] Y. Xia, K. Fairbanks, and H. Owen. Visual analysis of
program flow data with data propagation. In J. R.
Goodall, G. Conti, and K.-L. Ma, editors, Vis. for
Comp. Sec., LNCS 5210, pages 26–35. Springer, 2008.

[43] D. Yao, M. Shin, R. Tamassia, and W. Winsborough.
Visualization of automated trust negotiation. In IEEE
Workshop on Vis. for Comp. Sec., pages 65–74, 2005.

[44] C. L. Yee, L. L. Chuan, M. Ismail, and N. Zainal. A
static and dynamic visual debugger for malware
analysis. In Asia-Pacific Conf. on Communications,
pages 765–769, 2012.


	Introduction
	Background
	Related Work
	Method
	Literature Research
	Focus Group
	Interviews

	Result
	Literature Research
	Focus Group
	Interviews

	Data–Users–Tasks Analysis
	Conclusion and Future Work
	Acknowledgment
	References

