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Abstract

Due to the increasing threat from malicious software (malware), monitoring of vulnerable systems is becoming
increasingly important. The need to log and analyze activity encompasses networks, individual computers, as well
as mobile devices. While there are various automatic approaches and techniques available to detect, identify, or
capture malware, the actual analysis of the ever-increasing number of suspicious samples is a time-consuming
process for malware analysts. The use of visualization and highly interactive visual analytics systems can help to
support this analysis process with respect to investigation, comparison, and summarization of malware samples.
Currently, there is no survey available that reviews available visualization systems supporting this important and
emerging field. We provide a systematic overview and categorization of malware visualization systems from the
perspective of visual analytics. Additionally, we identify and evaluate data providers and commercial tools that
produce meaningful input data for the reviewed malware visualization systems. This helps to reveal data types that
are currently underrepresented, enabling new research opportunities in the visualization community.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces, I.3.8 [Computer Graphics]: Applications—, K.6.5 [Management Of
Computing And Information Systems]: Security and Protection—Invasive software

1. Introduction

Malicious software, or malware, can be defined as “any soft-
ware that does something that causes harm to a user, com-
puter, or network” [SH12]. Examples include viruses, trojan
horses, backdoors, worms, rootkits, scareware, or spyware.
Malware analysis, in turn, is defined as “the art of dissect-
ing malware to understand how it works, how to identify
it, and how to defeat or eliminate it” [SH12]. For such an
analysis to be effective, accurate detection mechanisms are
needed [DKLT14]. These include classical approaches rely-
ing on binary signatures that represent certain static portions
of a sample’s code as well as various behavioral detection
techniques relying on an accurate trace of e.g., functions ex-
ecuted by an application during run-time. The number of
malicious programs, however, is growing at a tremendous
rate. The sheer number of newly discovered malware vari-
ants poses a significant challenge to the security commu-
nity. In the third quarter of 2014 alone, 20 million new sam-
ples were discovered [Pan14] which amounts to more than
150,000 pieces of malicious software that need to be triaged

every day. What some argue to be a manageable annoyance
for personal computer users has the potential to cause severe
damage in high-availability environments or safety critical
infrastructures.

Because of the overwhelming quantity of samples and the
fact that manual analysis by domain experts is very cumber-
some, automated data analysis methods are in dire need. In
order to automate this process as much as possible, one fea-
sible approach is to specify patterns of particular system call
sequences and categorize them as being potentially harmful
or harmless [DKLT14]. However, this process cannot be au-
tomated completely since domain experts need to be in the
loop to identify, correct, and disambiguate intermediate re-
sults [WAR∗14]. Lee et al. [LSKJ11] show that the use of
visualization speeds up the malware detection process sig-
nificantly. Large amounts of data, complex data analysis re-
quirements, and the combination of automated data analy-
sis with analytical reasoning by domain experts lends itself
very well to the notion of visual analytics [TC05,KKEM10].
Visual analytics, “the science of analytical reasoning facili-
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Figure 1: Data collection from malware samples and interactive analysis of these data using visual analytics methods are the
main stages of malicious software analysis. Both stages of the process are covered in this survey.

tated by interactive visual interfaces” [TC05, p. 4], is a com-
parably young field of research. A major tenet of visual an-
alytics states that analytical reasoning is not a routine ac-
tivity that can be automated completely [Weg97]. Instead it
depends heavily on analysts’ initiative and domain experi-
ence. Furthermore, visual analytics involves automated anal-
ysis methods which computationally process large volumes
of data and thus complement human cognition.

There are a number of approaches that utilize interactive
visual methods for malware analysis. However, there is no
survey available that reviews visualization tools for mali-
cious software analysis in a comprehensive and systematic
manner. To close this gap, we provide a systematic overview
and categorization of the most commonly used visualization
techniques for malware analysis.

The main objective of this work is to compare various
malware analysis systems and to categorize them based on
a number of criteria which are listed in Section 6. Based on
the categorization and discussion of different tools, this sur-
vey provides a comprehensive overview of various, currently
utilized visualization systems for malicious software analy-
sis employed in different areas of malware analysis. Armed
with this information, it will become significantly easier for
researchers and analysts to identify new research areas and
help them focus their efforts in the years to come. In ad-
dition to visualization solutions, this survey includes a sec-
tion discussing and comparing a number of data providers
that are part of different malware analysis suites and tools.
These data providers are categorized by their main purpose
and their provided functionality in terms of data collection
(see Section 3.1). We also present challenges and opportuni-
ties for future research at the end of the paper.

The overall structure of this report is shown in Figure 1
which follows the general workflow of malware analysis.
After discussing related work in Section 2 we focus on data
providers (Section 3). These produce data from malware
samples and form the basis for visual exploration. We de-

scribe our research method and the process of finding and
selecting suitable tools in Section 4. Sections 5 and 6 present
and compare the surveyed approaches and describe the cri-
teria used for comparison. We conclude in Sections 7 and 8
with a discussion of our findings and present future research
challenges in the field of malware visualization systems.

2. Related Work

Even though malware analysis is a prevailing challenge and
a worthwhile application domain for visual analytics, we
could not identify any academic work surveying this field
from a visualization perspective. In the related area of net-
work security, visualization is surveyed by Shiravi et al.
[SSG12] who describe 38 different systems divided into 5
different groups of use cases. Like our work, they compare
data sources and visualization techniques; however, data
sources and analysis objectives differ from those relevant to
malware analysis. Conti’s book [Con07] covers certain as-
pects of malware analysis only from the perspective of net-
work traffic analysis. Software Visualization [Die07] shares
some data sources and techniques (static and dynamic) but
has completely different analysis goals.

There is, however, general literature on automated tech-
niques for malware detection and analysis as well as sur-
veys for areas related to malware analysis: Siddiqui et al.
[SWL08] provide a compact overview of 19 malware de-
tection approaches using data mining on file features. They
categorize them based on the included file properties, the
analysis type, and the detection strategy. Complementarily,
Egele et al. [ESKK12] survey 18 approaches for dynamic
analysis of malware samples and compare them along-
side emulation/instrumentation technologies, the granular-
ity of recorded malware behavior, and obfuscation tech-
niques. Furthermore, some of their systems support clus-
tering or automatic report generation. Bazrafshan et al.
[BHFH13] survey 22 approaches for heuristic malware de-
tection and categorize them by the data source used. Idika
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and Mathur [IM07] survey malware detection approaches
based on anomalies, specifications, or signatures. In general,
the focus of aforementioned surveys is on providing data for
subsequent analysis. Section 3 follows a similar approach.

The landscape of mobile malware was surveyed by Felt
et al. [FFC∗11], who summarized the characteristics of 46
malware samples for iOS, Android, and Symbian operat-
ing systems. Additionally, they discussed the effectiveness
of preventive measures against such mobile malware. Fi-
nally, the topic of port scanning was surveyed by Bou-Harb
et al. [BHDA14] and Bhuyan et al. [BBK11].

Ultimately, there is no detailed overview available in the
field of visual analytics for malware analysis. Thus, we aim
to fill this gap by providing an overview on the state-of-the-
art of the available visual analytics approaches and their po-
tential data providers.

3. Data Providers

In this paper, we define data providers as standalone tools
or commercial suites that statically or dynamically analyze
malware and return the collected information for further pro-
cessing or analysis. Visualization tools use these data as pri-
mary input which makes the quality of the provided informa-
tion paramount to preserving semantic expressiveness. Ev-
ery data provider runs in an analysis environment and re-
trieves base data on a certain monitoring level. In the follow-
ing we explain each term in detail and take a look at some of
the most common tools and their analysis capabilities.

Data providers utilize static or dynamic analysis methods
(sometimes both) to gather information about a potentially
malicious piece of software. Static analysis describes tech-
niques that do not require the sample under scrutiny to be
actually executed. Depending on the depth of analysis a file
may be checked for its basic properties (e.g., file type, check-
sum), easily extractable information (e.g., strings, DLL im-
port information), or be fully disassembled [KM07]. The
analysis environment plays a negligible role for static analy-
ses – the analyst simply chooses a platform compatible with
the tools of her choice.
Dynamic analysis goes a step further and executes the file on
a host system. Various tools then monitor the execution and
log relevant information into an execution trace. This ranges
from simple file system operations to a full instruction trace
captured through a debugger. The analysis environment is
essential for the dynamic approach since the type of data
logged depends on both the environment as well as the tech-
niques used to capture system events. Both will be discussed
in detail below.

Analysis environments are the foundation of the actual
implementation of the respective malware analysis system.
Depending on a data provider’s capabilities and require-
ments, these environments may be physical machines, vir-
tual machines, or emulated systems.

Physical machines are bare-metal computers that execute a
sample directly in their preinstalled operating system (OS).
While physical setups are unlikely to be detected by the mal-
ware, the potentially malicious sample is able to directly ac-
cess the hardware it is running on (usually through a layer
of abstraction provided by the OS). It is also important to
keep in mind that reinstalling/resetting a physical machine
is more time-consuming than resetting a virtualized or em-
ulated environment. Data providers need to be run directly
on the real OS using a local user account (usually one with
administrative privileges) and therefore need to abide by the
system’s general rules.
Virtual machines (VMs) can be understood as isolated du-
plicate of a real machine [Gol74]. For classic VMs, a so-
called virtual machine monitor (VMM) manages hardware
access and represents this virtual copy to the executed soft-
ware. This prevents a program from directly interacting with
the real hardware but may complicate analysis of malware
that utilizes VM evasion techniques to prevent virtualized
execution. Like physical machines, VMs are limited to the
same architecture as the host machine; the choice of OS,
however, is not limited to the host’s. Data providers are ei-
ther run inside the virtualized OS or are part of the VMM.
The latter is difficult to detect by the analyzed sample but
is limited to the collection of VM state information unless
the actual CPU instructions are monitored and correlated to
specific API calls as part of a hybrid approach [ESKK12].
Available classic VM solutions include the VMware prod-
uct line [VMW14], the Xen project [Lin14], and Oracle VM
VirtualBox [Ora14].
Emulated systems represent a system that does not share any
physical characteristics with the host. In its basic implemen-
tation, CPU and memory are fully emulated (i.e., indepen-
dent and isolated from the physical machine). Since the OS
needs to be emulated as well, it is necessary to recreate all
functionality (libraries, services, etc.) required to success-
fully run the sample. A program running in such an envi-
ronment is not able to access the physical machine in any
way but may crash if it requests a resource or function that
is not part of the emulation. Full system emulation such as
QEMU, on the other hand, also provides emulated hardware
and peripherals [Bel05]. This makes it possible to run a full-
fledged OS on virtualized hardware that is, unlike a VM,
not bound to any specific architecture. Malware may utilize
sandbox analysis evasion (and/or detection) techniques to
check whether it is being run in an emulated environment.
Also, emulation is much more resource-demanding than vir-
tualization and significantly slower than a bare-metal ma-
chine. However, since emulation offers full access to the sys-
tem from the outside, all sample activity can be collected di-
rectly from the emulator. Like the VMM-based approach, it
is necessary to translate CPU state and memory contents to
high-level information such as file or registry operations.

Base data describes the type of data monitored and
logged by a provider. There is a multitude of information to
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be gleaned from static and dynamic analysis, each offering
specific insight into the nature and functionality of a mali-
cious program.
The virus definition is perhaps the simplest piece of ex-
tractable information. The sample’s binary code is matched
to patterns stored in a signature database of a virus scanner
in order to determine if the entire file (checksum) or parts of
the code (snippets) are known to be malicious. Many tools
include this type of common virus scan to quickly determine
a malware sample’s category.
Packer information includes used packer designations and
general compression information about the sample. Malware
authors often use various packing algorithms to obfuscate
the program’s code and to impede forensic investigation.
Many static analysis approaches require the sample to be un-
packed in order to yield workable results.
File and header information describe a sample’s actual type
(independent from its cosmetic filename extension) and its
code sections. Windows portable executable (PE) files come
with a header that contains interesting metadata stored in
so-called sections – e.g., the .text section contains the user-
written code while .rdata lists import and export informa-
tion [Mic99].
Library and function imports hint at the functionality that
might be utilized by the sample upon execution. Libraries
usually contain a number of functions related to a specific
area of operation; e.g., the Windows library advapi32.dll
aggregates most service manager and registry interaction
functions while ws2_32.dll handles low-level networking
[RSI12].
CPU instructions and their associated assembly operations
are the machine code and low-level language representation
of a program, respectively. Being a vital part of in-depth
reverse-engineering, this base data type offers detailed in-
sight into a sample’s core functionality. The program is ei-
ther disassembled into a trace of sequential instructions to
the processor or is dynamically debugged to retrieve register
values and identify dormant code.
Unlike function imports, monitoring the actual execution of
raw system and API calls yields information about the gen-
eral behavior of a sample. Calls may include wrapper func-
tions that offer a simple interface to the application program-
mer or native system calls that represent the underlying OS
or kernel support functions. Interpreting system calls allow
the analyst to identify e.g., file creation, registry modifica-
tion, socket interaction, or setup routines.
File system operations sum up specific activity on a file ob-
ject level. The creation, modification, and deletion of files is
monitored and logged. While tools usually use system and
API call monitoring to discern file system operations, the
added layer of abstraction drastically increases the readabil-
ity of the information.
Registry, process/thread, and network operations are seman-
tically and syntactically similar but are usually processed
and presented independently. While file interaction, registry
operations, and process commands are usually derived only

from calls, network activity is either collected through call
tracing or by directly monitoring network traffic at the phys-
ical or logical interface adapter. Data providers may utilize
traffic logging to extract a multitude of handy information
such as IP addresses contacted by the infected machine,
information on downloaded files, or even plain-text pass-
words.

3.1. Comparison and Discussion

In the following, we compare specific data providers and
their technical capabilities (cmp. Table 1). While the remain-
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Analysis mode and environment
Static analysis support 33 3 33 33

Dynamic analysis support 33 33 33 33 33 33 33 33

Native analysis environment 33 33 33 33 33 33

Virtual machine environment 33 33 33 33 33 33 33 33

Emulation environment 33 33 33 33 33

(Simulated) Internet access 33 33 33 33 33 33 33

(Simulated) LAN services 33 33 33 33

Interface
Command line interface 33 33 33 3

Graphical (web) interface (GUI) 33 33 33 33 33 33 33 33 33

Sample input
Single file submission 33 33 33 33 33 33 33 33

Folder submission (3) (3) 33 33

URL/URI 33 33 33 33 33

Batch processing (3) (3) (3) 33 (3) (3) (3) (3) (3)
Interactive on-demand analysis 3 33 33 33 33

Supported input file formats
Windows executables (.exe) 33 33 33 33 33 33 33 33 33

Windows libraries (.dll) 33 33 33 33 33 3 33 3

Microsoft Office files 33 33 33 33 33

Portable document format (.pdf) 33 33 33 33 33

Malicious URL scan 33 33 33 33 33

PHP files (.php) 33

Java file (.jar) 33 33 33 33 33 33

Visual Basic scripts (.vbs) 33

Image files (.jpg, .png,...) 33 33

Video files (.wmv, .flv,...) 3 3 33 3

ZIP archive (.zip) 33 33 33 33 33

Base data
Virus definition/Malware name 33 33 33 33

Behavior classification 3 33

Packer information 3 3 3

File information/File header 33 33 3

Library imports/loads 33 33 33 33 3 33 3

CPU instructions/assembly 33 33 33

API calls 3 33 3 3 3 3 33 33 33

System calls 3 33 3 3 3 3 33 33 33

File system operations 33 33 33 33 33 33 3 3 3

Registry operations 33 33 33 33 33 33 3 3 3

Process/thread information 33 33 33 33 33 33 3 3 3

Network activity 33 33 33 33 33 3 3 3 3

Report output
PDF report 33 33

HTML report 33 33 33 33

XML report 33 33 33 33 33

TXT report 33 33 (3) 33

CSV report 33 33

Native/Proprietary format 33 33 33 33

PCAP network dump 33 33 33 33 33

JSON report 33 33 33

Memory dumps 33 33 33

String dumps 33 33

Screenshots 33 33

Table 1: Comparison of Data Providers (33... fully im-
plemented, 3... limited or partial implementation (often due
to automated interpretation or the complete lack thereof),
(3) ... supported (through e.g., scripting), but not imple-
mented by default.
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der of the paper focuses on visualization approaches and
techniques, below tools are assessed by the amount and qual-
ity of information they provide for subsequent visualization.

To encompass a meaningful range of environments and
base data types, we evaluated a total of 5 static and dynamic
analysis suites (which come with their own analysis environ-
ment) as well as 4 classes of stand-alone tools. It is impor-
tant to keep in mind that this is not a strict feature survey
or review of available commercial products but an assess-
ment of the data these applications provide. For a better un-
derstanding of the different output data structures, we pro-
vide some examples on our supplement material webpage
(http://mc.fhstp.ac.at/supp/EuroVisStar2015).

Anubis is an automated dynamic analysis tool which
evolved from TTAnalyze [BKK06, BMKK06]. Its commer-
cial offshoot is marketed under the name LastLine Analyst.
Anubis uses the QEMU emulator [Bel05] to run potentially
malicious software on a feature-complete Windows XP OS.
A second virtual machine (VM) operates a number of fake
network services for the malware to exploit. Since Anubis
does not rely on API function hooking [Iva02] or debugging,
it is harder to detect by malware than other VM-based solu-
tions using these techniques. Altering the program through
function call injection is supported by the tool. Anubis re-
turns a high-level report that lists file, process, registry, and
network activity. Its output is best suited for analysts who
want a comprehensible overview of a sample’s system or
network behavior.

Cuckoo Sandbox [Ge14] is a lightweight open source
solution for automating the dynamic analysis of files. It is
heavily customizable and utilizes other stand-alone tools
(e.g., tcpdump and volatility) to generate a complete picture
of a program’s activity. Cuckoo uses a common VM envi-
ronment compatible with a range of systems – it is however
recommended to use Ubuntu Linux as host and Windows
XP for the guest images. The report file returns simple file,
registry, and mutex interactions as well as limited static in-
formation. Due to its flexible nature, Cuckoo output data can
assist visualization efforts in a wide variety of applications,
including forensic memory or string dump analysis.

CWSandbox [WHF07] and its commercial successor
GFI Sandbox/ThreatAnalyzer are dynamic malware analy-
sis platforms that use either virtual or native (physical) Win-
dows environments. Analysis is based on hooking functions
that perform API-level monitoring by rewriting the sample
upon load. Like Anubis and Joe Sandbox, it returns a tidied-
up list of file system, registry, network, and other OS opera-
tions the sample performed.

FireEye Malware Analysis System (MAS) [Fir13,Fir14]
is the forensic, lab-based version of the FireEye product
line. The MAS supports configurable VM-based analysis
of various code formats. It is possible to use preconfig-
ured images with preinstalled software (e.g., Adobe Reader)
or put together a custom installation. Unlike most other

solutions, FireEye comes bundled with a hardware appli-
ance of varying specifications. The system returns a textual
trace that includes general file information, Yara signature
matches [Alv15], and malicious alerts (certain API calls,
process activity, etc.) triggered by the sample. Compared to
the other suites, FireEye offers a slightly less comprehensi-
ble overview of malicious behavior and instead relies on a
more alert-based approach. On the other hand, the MAS en-
ables efficient automated parsing thanks to its multitude of
output formats.

Joe Sandbox [Joe14] is a dynamic malware analysis suite
that supports native and VM-based operation. API and sys-
tem call hooking is performed for each sample; a kernel
mode driver hides the necessary function rewriting from the
malware under investigation. Joe Sandbox simulates user ac-
tivity through various AutoIT [Aut14] scripts running di-
rectly on the analysis system, allowing for e.g., the auto-
mated interaction with an installer. The tool returns a com-
prehensive list of system activities and collects dropped
files as well as a network trace. Static analysis is supported
through an optional module. Joe Sandbox offers a good se-
lection of output formats as well as a high level of analysis
detail.

Process Monitor (ProcMon) [RC14] is a free file system
monitoring tool developed by Mark Russinovich and Bryce
Cogswell. Part of Microsoft’s SysInternals suite, ProcMon
combines non-destructive monitoring and logging of registry
and process/thread activity through a device driver loaded
at run-time [RSI12]. The tool returns an abstracted view of
the system’s API activity; its output includes the resource’s
time and type of access as well as the stack of the respective
thread. Since ProcMon is not a malware suite, it does not
come with an analysis environment of its own but requires
a native or virtual Windows installation to run. The output
data provided by ProcMon is especially well-suited for the
visualization of processes and threads.

API Monitor (APIMon) is a free tool by Rohitab Batra
that offers API and native function monitoring/manipulation
functionality. It performs API hooking and supports a large
number of native and undocumented calls as well as COM+
interface methods [Bat14]. Unlike most other tools and
suites, it offers little in terms of result abstraction; while
parameters and return values can be decoded on demand,
the resulting trace is not interpreted in any way. This makes
the tool very versatile in its application but may require ad-
ditional processing or filtering prior to visualization. API-
Mon is well-suited for visualizing call sequences of specific
threads. Dornhackl et al. [DKLT14] used a system based
on an attributed grammar to automatically process APIMon
output and map it to a hierarchical model of malicious be-
havior.

Generic disassembler and generic debugger are data
provider categories that summarize the average capabilities
of both types of analysis tools. Solutions include applica-
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tions such as IDA Pro (a widely used disassembler for many
different binary file formats), OllyDbg, and WinDbg (Mi-
crosoft Windows debuggers). Disassemblers and debuggers
generally exist for various architectures and file types; it is
recommended to peruse additional resources to identify the
desired domain-specific solution. Many visualization tools
name IDA Pro [Pan08,ASL12,HLI13,HLKI14] as their pri-
mary data source for static information. Using a disassem-
bler or debugger will yield low-level data (e.g., CPU instruc-
tions) that is especially useful for image-based techniques
and other raw-data visualization.

Discussion: The various tools and suites all come with
their unique strengths and weaknesses. While analysis suites
usually handle most of the data interpretation and remove
excess information automatically, stand-alone tools often re-
quire further interpretation by the user. The unfiltered nature
of their output, however, often allows for more flexible ap-
plications. In the end, the choice of a data provider will be
driven by the specific needs of the malware analyst in regards
to mode (static vs. dynamic), depth (activity overview or full
traces), and output of the respective tool. In many cases, a
combination of analysis tools will yield the most satisfying
result.

Information in Table 1 was extracted through testing,
taken from various analysis reports and documentation as
well as from aforementioned literature. Please note that
some capabilities may be subject to change since new fea-
tures might be added to the tool/suite at a later point. On-
site testing was performed with a 2010 version of Anubis,
FireEye MAS 6.4.0, a 2013 version of Joe Sandbox, Process
Monitor 3.1, and API Monitor v2 r-13. The latest Anubis,
CWSandbox (ThreatAnalyzer), and Cuckoo (Malwr) sand-
boxes were assessed through their public web submission
frontends.

After discussing some background on the malware anal-
ysis process and data providers to collect analysis data we
will now investigate visual analytics methods for malware
analysis.

4. Research Method

To get a comprehensive overview of visualization methods
supporting malicious software analysis systems in the field
of IT security, we used a number of digital libraries (IEEE
Xplore, ACM digital library, Google Scholar, and Academic
Research Microsoft). A skeleton of common search terms
was used in all of them. To improve our search results
we individually refined the different keywords and keyword
combinations for each of the used search engines in order
to achieve maximum topical coverage. This was necessary
since each search engine has its own strengths and weak-
nesses (e.g., on IEEE Xplore it is possible to structure your
own advanced search by selecting different search parame-
ters). All the used search terms and combinations are pro-
vided for download on our supplementary material webpage

(http://mc.fhstp.ac.at/supp/EuroVisStar2015). Based on the
keywords and combinations used, we found about 200 pub-
lications.

In a second step, we identified the authors of the most
relevant papers and refined our search to include other pub-
lications by these researchers. Additionally, we visited the
homepages of the identified authors to look for additional
material related to the research topics. Based on the em-
ployed search strategies it was possible to identify more than
220 different scientific papers and articles in the respective
area.

In order to sort out inappropriate papers, we perused all
the abstracts and the conclusions for relevant information.
Through this process, we verified whether the identified pa-
pers really fit the main topic of malware analysis systems
that make use of visualization methods. Thus, it was possible
to reduce the findings to 42 papers. The categorization pro-
cess and the elimination of inappropriate papers were per-
formed in each search step of the research process.

In addition to the results of the search engines, we wanted
to make sure to include all papers published at VizSec (Vi-
sualization for Cyber Security) which is the premier venue
for discussing malware visualization systems as it brings to-
gether security and visualization experts. To explore VizSec
publications, we utilized our publicly-available search inter-
face for VizSec papers (http://vizsec.dbvis.de/) and skimmed
through the entirety of publications. In the end, we identified
3 additional papers directly related to malware (most had
already been found earlier). Finally, we investigated all the
references of the current paper collection to check whether
there are any papers still undiscovered.

We eventually identified 25 papers matching our specific
topic of malware visualization systems. Some papers present
incremental work which leads to the fact that [QL09] is sim-
ilar to [QL11], because it is an extension journal paper of
the same system. Similarly, [HKI14] is related to [HLI13],
and [SM14a] to [SM14b]. However, we still decided to in-
clude all versions in the survey in order to present an ex-
tensive overview of all academic publications that are in the
scope of this work.

To classify and categorize the identified papers, we built
an interactive web application to gather responses and col-
lect reviews of all the members of our team. The web appli-
cation directly connects to a shared Zotero collection using
the Zotero API [Roy15]. We decided on an extensive list of
features and criteria to categorize and review the visualiza-
tion systems. Two researchers extensively reviewed all the
papers. The results were directly entered into our web appli-
cation which stored them in a database and eventually syn-
chronized them to the Zotero collection in the form of tags.
Afterwards, all criteria where no consensus was reached
were discussed to agree on a common approach.

The public part of the web application is available at

c© The Eurographics Association 2015.

http://mc.fhstp.ac.at/supp/EuroVisStar2015
http://vizsec.dbvis.de/


M. Wagner et al. / Visualization Systems for Malware Analysis

Individual 
Malware Analysis

Malware 
Summarization

Using VA 
to Enhance

Forensics / Classification 
Methods for Malware 

Detection

Malware Forensics
Understanding of individual behavior

Malware Classification
Identification of common behavior

Malware 
Comparison

1. Feature-Based Approach 

2. Image-Based Approach

Rule / Signature Generation

Taxonomy for Visual Analytics Tools for Malware Analysis

[CDSS08, QL09, THGF09,
GS11, QL11, YCIZ12, ZN12,

DPM13, WPO14]

[GBA∗12, SMG12, GSG∗14,
LSG14]

[Pan08, NKJM11, WY13,
KM13, SM14b, SM14a,

HLKI14]

[Yoo04, ASL12, PCDM13,
HLI13, HKI14]

Figure 2: Malware Visualization Taxonomy – Categorization of malware visualization systems into three categories, namely
(1) Individual Malware Analysis, (2) Malware Comparison, and (3) Malware Summarization. All systems have the ultimate goal
to generate rules and signatures for fully-automated malware detection systems. While the first category tackles the problem of
understanding the behavior of an individual malware sample for forensics, the latter two focus on the identification of common
behavior for malware classification.

(http://malware.dbvis.de/). All tables in this survey can be
interactively explored using the mentioned web application.

5. Visualization Systems for Malware Analysis

Based on our literature research, we identified various gen-
eral trends and objectives prevalent in malware visualiza-
tion systems. Using visualization obviously helps to under-
stand malware behavior, which is helpful for forensics and
malware detection. Additionally, visual analysis can help to
support the malware classification process. Malware detec-
tion does mostly refer to the automatic identification of mal-
ware (e.g., anti-virus software for end users), however, in
more complex scenarios, targeted attacks, or for unknown
malware, manual analysis by malware experts is inevitable.
Such analysis helps to identify suspicious behavior, to even-
tually create rules and signatures, which can then be used
to improve automated malware detection. Malware classifi-
cation focuses on the aspect to assign an unknown malware
sample to a known group of malware types.

In general, there are two different main goals of malware
visualization systems. On the one hand, there are systems
for malware forensics which will be used to understand the
individual behavior of a malicious malware sample and on
the other hand, there are malware classification tools which
will be used to identify the common behavior of malware
samples. Based on these main groups, we differentiate be-
tween three underlying main categories. We developed the
Malware Visualization Taxonomy (see Figure 2) which rep-
resents the three categories:

Individual Malware Analysis: These systems support the
individual analysis of primarily single malware samples to
gain new insights of its individual behavior related to mal-
ware forensics.

Malware Comparison: This category fits to visualization
tools that are primarily used for the comparison of n to m
malware samples for the identification of common behavior
(e.g., the malware family) to support malware classification.
In general, we have identified two different subcategories:

• Tools using a Feature-Based Approach explore and
compare different malware samples based on extracted
features. Those tools use various data visualization tech-
niques to compare characteristics with each other.

• The Image-Based Approach generates visual images
based on binary data or the behavior logs of the mali-
cious software. Eventually, those visual fingerprints are
compared using computer vision techniques.

Malware Summarization: Systems of this category sum-
marize the behaviors of n different malware samples to iden-
tify similarities and to gain new insights of their common
behavior.

As sketched in Figure 2, eventually, one or several mal-
ware analysis tools can be used in combination to generate
rules and signatures for malware samples or malware fam-
ilies based on the generated insights. Additionally, the in-
creasing use of visual analytics methods will enhance the
forensics and classification methods for malware detection.

Discussion: From the taxonomy as seen in Figure 2, it
becomes obvious that 9 tools focus on individual malware
analysis, 11 on malware comparison, and 5 on malware sum-
marization to provide visual summaries of large amounts of
malware samples and their characteristics. Additionally, it is
interesting to see that only 4 tools for malware comparison
are using primarily the feature-based approach, while 7 fo-
cus on image-based approaches.

Based on the various publication years, it becomes ap-
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parent that using malware characteristics (based on features
extracted through static and dynamic malware analysis) is
becoming more common since 2013 and that fewer systems
focus on individual malware analysis (malware forensics).
Most of the research for individual malware analysis was
performed between 2004 and 2012. In the past 10 years, vi-
sualization seems to be used more often to generate image-
like representations of malware samples which are then used
for visual comparisons.

5.1. Visualization for Individual Malware Analysis

The first group contains visualization systems geared to-
wards the extensive analysis of individual malware sam-
ples [CDSS08,QL09,THGF09,GS11,QL11,YCIZ12,ZN12,
DPM13, WPO14]. Zhuo and Nadjin [ZN12], for example,
focus on only one specific type of malware behavior – the
network activity of a malware sample – which is then visu-
alized by a glyph-like chart as can be seen in Figure 3. This
specific feature can be explored in great detail which is not
possible in other, less specialized visualization tools.

Figure 3: Individual Malware Analysis – This interactive
system visualizes network activity of an individual malware
sample [ZN12]. Image c© 2012 ACM, Included here by per-
mission.

Other tools consider various features at the same time,
but still focus on the individual analysis of single malware
samples. Trinius et al. [THGF09] use treemaps and so-called
thread graphs, as seen in Figure 4, to visually analyze system
calls executed by the selected malware. While basic compar-
ison is also possible with most of the tools in this category
(e.g., using multiple instances of the same tool), they do not
specifically support bulk analysis.

Future Research Directions: The visual analysis of in-
dividual malware samples leads the analyst to a better un-
derstanding of the specific behavior and can help to judge
if an unknown sample is indeed malicious or not. However,
current work could be improved with respect to malware de-
tection, because many of those tools do not include classi-
fication methods to compare the observed behavior to the
behavior of known malware types. In the future we expect

more visual analytics tools to combine individual malware
analysis with automated methods and to incorporate meth-
ods to directly relate and compare findings with behavior
of known or previously analyzed samples. Automatic high-
lighting of important or possibly malicious aspects, would
help the analyst to quickly focus on most suspicious behav-
ior first to reduce the time needed for manual analysis.

Figure 4: Individual Malware Analysis – Visual represen-
tation of system calls issued over time by an individual mal-
ware sample. Image c© 2009 IEEE. Reprinted, with permis-
sion, from [THGF09].

5.2. Visualization Support for Malware Comparison

While the individual analysis is needed to get a deep un-
derstanding of a malware sample, the comparison with al-
ready known malware samples is crucial for malware clas-
sification. On the one hand, this step helps to reduce the
number of samples that need time-consuming manual anal-
ysis. On the other hand, comparison with other samples can
help to identify groups or malware families. All the systems
which are represented in this category use visualizations to
enhance the comparison of n with m malware samples for the
identification of their common behavior (e.g., to identify re-
lated samples, find the correct malware family). Technically,
we distinguish between feature-based and image-based ap-
proaches.

5.2.1. Feature-Based Approach

Feature-based approaches [GBA∗12, SMG12, GSG∗14,
LSG14] use visual analytics techniques to let the user fil-
ter, search, compare, and explore a wide range of properties
extracted during analysis. These systems provide means to
compare malware samples based on their similarities of fea-
tures.

Individual exploration of these features is also possible,
but is much more limited, compared to the previous cate-
gory. While some of the tools of the previous category were
specifically designed to do an in-depth analysis of network
activity or to fully explore the temporal sequence of system

c© The Eurographics Association 2015.
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calls, feature-based malware comparison tools try to focus
on a broad set of different features and characteristics, and
try to make them all accessible to the analysts. This leads to
more abstract representations, higher aggregation levels, and
eventually less details for individual features (e.g., ignoring
the temporal aspects of network connectivity).

Figure 5 shows a screenshot of a visual analytics system
by Gove et al. [GSG∗14] used to interactively explore and
compare large sets of characteristics or attributes of samples
in malware corpora.

Figure 5: Comparison of Malware Characteristics – Iden-
tifying similar malware samples to a focus sample by com-
paring them along different sets of characteristics (e.g., ca-
pabilities) [GSG∗14]. Image courtesy of Robert Gove.

The advantage of such approaches is that the analyst can
directly compare various features. This helps to understand
in which features malware binaries are related and in which
they are not. However, on the other hand it is harder to get a
quick visual overview of occurring patterns.

Future Research Directions: The comparison of charac-
teristics helps to visually enhance the malware classification
process in various ways. Tools in this category also focus on
the question of which features can be extracted and used for
comparison. Comparing such malware characteristics helps
to identify related samples based on similarity metrics and
to identify the common behavior of the explored samples for
classification. Especially, the possibility to compare many
different features at once and the possibility to apply stan-
dard methods from the field of data analysis (e.g., MDS,
PCA, clustering) opens a promising research direction. Us-
ing visual interfaces to guide the analyst in the selection of
features seems to be a good way to better support malware
classification. Such visual analytics interfaces would even-
tually help to define better classifiers to improve malware
classification models.

(a) FakeRean.D (b) FakeRean.E (c) Mebroot

Figure 6: Comparison of Malware Images – Visualizing
malware executables as grayscale images is a common tech-
nique to visually identify similarities with low computation
costs. Image by the authors.

5.2.2. Image-Based Approach

Image-based approaches [Pan08, NKJM11, WY13, KM13,
SM14a, SM14b, HLKI14] have in common that they use vi-
sual mappings to render an image for each malware sample.

For example, the analyst might need to correlate a given
suspicious file to a cluster of malware variants in order to
associate the file to a specific malware family. Similar im-
ages can be visually clustered using either a manual or an
automatic approach based on algorithms from the areas of
computer vision and image processing. Some systems visu-
alize the binary data and directly map the (raw) byte-code
representation or respective entropy values to an image (e.g.,
[NKJM11, HLKI14]). We applied this technique to variants
of the FakeRean malware as seen in Figure 6a. We use this to
detect similar images representing related malware samples
(Figure 6b). These particular malware samples can be visu-
ally distinguished from Figure 6c, which represents a Me-
broot malware sample, sharing no visual patterns with the
other malware family.

Nataraj et al. [NYPZ11] extract various texture features
from such images, to eventually use them for classification.
The advantage of this technique is, that it can be applied to
any file and can be computed efficiently, which is important
for large malware corpora. While classification accuracy is
quite comparable for many malware variants, the approach
is limited because it does not make use of any dynamic anal-
ysis and only relies on the actual bytes found in the binaries.
Another problem is, that the visual impression is strongly
dominated by possible images embedded in the resource sec-
tion of an executable, which could be avoided by malware
authors to create less obvious visual patterns.

To overcome this drawback, the approach was extended to
visualize disassembled CPU instructions or API calls (e.g.,
[Pan08,SM14a,SM14b]) in a similar way, however, resulting
in higher computation costs.
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Future Research Directions: One possible future re-
search direction could be the implementation of interaction
methods to segment a region of interest or to characterize
these texture patterns. Automated image comparison would
help analysts to visually identify common code portions or
specific instruction blocks within a sample. This informa-
tion could be used to directly highlight relevant sections
in the image. Additionally, the integration and combination
of image- and feature-based methods could be promising.
Image-based methods using static analysis together with a
probability score can be used as efficient first step in a clas-
sification pipeline. Afterwards, the more expensive feature-
based methods together with dynamic analysis would only
be applied to those samples, which share less distinctive im-
age representations, eventually leading to a more scalable
classification process.

5.3. Visualization Support for Malware Summarization

While this category is more diverse, the associated tools all
provide primarily some kind of summarization capability for
a large number of malware samples within the visualiza-
tion [Yoo04, ASL12, PCDM13, HLI13, HKI14]. Some iden-
tify a visual mask that is common for all selected samples
(e.g., [Yoo04]) as seen in Figure 7. Others summarize and
extract a single combined representative out of many mal-
ware variants (e.g., [HLI13, HKI14]). Finally, some use vi-
sual representations to show hierarchical clusters [PCDM13]
or use heatmaps to visually represent kernels used for a sup-
port vector machine classifier to summarize and eventually
classify malware samples [ASL12].

Figure 7: Visualization Support for Malware Summariza-
tion – A self-organized map is calculated and visually repre-
sented by the system to summarize many malware variants
to extract common regions. With this technique it is possi-
ble to create a topologically ordered data mapping [Yoo04].
Image c© 2004 ACM, Included here by permission.

Future Research Directions: The combination of differ-
ent types of base data and data provider analysis modes are
frequently stated as future work in this category. This will

result in larger amounts and more heterogeneous data as in-
put for visualization systems. Another direction into larger
amounts of data can be the comparison of malware families
as a whole based on their summarization. Finally, the inte-
gration of malware summarization with malware compari-
son and malware forensics using semantic zoom for example
is a promising direction.

6. Categorization and Comparison

To provide a systematic overview of the findings from
our literature research, we decided to consistently catego-
rize all tools by the type of provided data, used visualiza-
tion techniques [Kei02], mapping and representation space
[AMST11], temporal aspects [AMST11], interactivity, and
problems/actions ("Why?") [Mun14]. Thus, all the used cat-
egorizations are based on well-established taxonomies used
in the visualization community and are described in detail in
this section.

6.1. Data Providers in Visual Analytics
This section highlights the common denominator of visual-
ization tools and malware data providers (cmp. Section 3).
The input requirements of every visualization tool corre-
spond to report output formats used by data providers. As
mentioned above, base data describes the actual type of in-
formation gleaned from malware analyses – it basically de-
termines the specific kind of monitored system activity or
program code to be subsequently visualized.

Table 2 shows the base data visualized by the various so-
lutions while Table 3 lists the respective data processing for-
mats (provider output formats) of each tool introduced in
Section 3.1. Using this information, an analyst can simply
choose the desired type and format and pick a suitable data
provider as well as visualization solution. Alternatively, the
table might be used as reference for tool capabilities and its
general approach.

Discussion: It is important to keep in mind that many vi-
sualization approaches utilize data gathered internally, e.g.,
through direct processing of a sample’s binary. To encom-
pass this vertical integration, the initial two base data cat-
egories were slightly altered: raw virus definition specifies
that the tool uses the actual virus definition (instead of its
plain-text abstraction as it is the case for most data providers)
while raw file (a sample’s binary/hexadecimal or ASCII rep-
resentation) replaces the preliminary behavior classification
done by some dynamic analysis suites. A newly added cat-
egory is memory/driver I/O, describing e.g., RAM read and
write operations as well as driver I/O activity captured by
specialized data providers or directly via the VMM. Other,
minor adaptations include the removal of PDF reports (pars-
ing PDF files is usually not feasible) and the addition of the
raw/binary category for direct sample input. Samples using
the raw data format for processing or input generally include

c© The Eurographics Association 2015.



M. Wagner et al. / Visualization Systems for Malware Analysis

[ Y
oo

04
]

[ P
an

08
]

[ C
D

SS
08

]

[ Q
L

09
]

[ T
H

G
F0

9]

[ N
K

JM
11

]

[ G
S1

1]

[ Q
L

11
]

[ Y
C

IZ
12

]

[ G
B

A
∗ 12

]

[ Z
N

12
]

[ S
M

G
12

]

[ A
SL

12
]

[ P
C

D
M

13
]

[ H
L

I1
3]

[ W
Y

13
]

[ K
M

13
]

[ D
PM

13
]

[ S
M

14
b]

[ H
L

K
I1

4]

[ H
K

I1
4]

[ S
M

14
a]

[ G
SG

∗ 14
]

[ W
PO

14
]

[ L
SG

14
]

Raw virus definition 3 3 - - - - - - - - - - - - - - - - - - - - - - -
Raw file (direct input) 3 3 3 - - 3 - - - - - - 3 3 3 - 3 3 - 3 3 - - - 3

Packer information - - - - - - - - - - - - 3 3 - - - - - - - - - - -
File information/File header 3 3 - - - 3 - - - - - - 3 3 - - 3 3 - 3 - - 3 - -

Library imports/loads - 3 - - 3 - - - - - - - - 3 - - - - - - - - 3 - -
CPU instructions/assembly - 3 - 3 - - - 3 3 - - - 3 - 3 - - - - - 3 - - - -

API calls - - - - - - - - - 3 - - - - 3 - - - 3 - 3 3 3 3 -
System calls - - - - - - 3 - - 3 - - 3 - 3 3 - - - - 3 - 3 3 -

File system operations - - - 3 3 - 3 3 - 3 - 3 - - - - - - - - - - - 3 -
Registry operations - - - - 3 - 3 - - 3 - 3 - - - - - - - - - - - 3 -

Process/thread information - - - - 3 - 3 - - 3 - 3 - - - - - - - - - - - 3 -
Network activity - - - - 3 - 3 - - 3 3 3 - - - - - - - - - - 3 3 -

Resource utilization - - - - - - - - - 3 - - - - - - - - - - - - - 3 -
Memory/driver I/O - - - 3 - - - 3 - - - - - - - 3 - - - - - - - - -

Table 2: Base Data – This table provides an overview of the base data that is used as input for the various malware visualization
systems. As discussed in Section 3, the data is collected by various data providers or the tool itself.
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HTML format - - - - 3 - - - - - - - - - - - - - - - - - - - -
XML format - - - - 3 - - - - - - 3 - 3 - - - - - - - - - - -

TXT format (plain text) - - - - - - 3 - - 3 - - 3 - 3 - - - 3 - 3 3 - - -
CSV format - - - - - - - - - 3 - 3 3 - - - - - 3 - - 3 - - -

Native/Proprietary format 3 3 - - - - - - - - - 3 3 - 3 - - - - 3 - - 3 3 -
PCAP/network traffic - - - - - - - - - - 3 - - - - - - - - - - - - - -

JSON format - - - - - - - - - - - - - - - - - - - - - - - - -
Raw/binary 3 3 3 3 - 3 - 3 3 - - - - 3 3 3 3 3 - 3 3 - 3 - 3

Memory dumps (raw) - - - - - - - - - - - - - - - 3 - - - - - - - - -
String dumps - - 3 - - - - - - - - - - - - - - - - - - - 3 - -

Images (pictures) - - - - - - - - - - - - - - - - - - - - - - - - 3

Table 3: Data Format – Visualization systems use various data formats as input data, generated by the data providers.

certain data provider functionality and do not rely on exter-
nal applications. Also note that some of the listed capabil-
ities are only implied by the respective authors; not every
format or type of base data is accurately specified.

6.2. Visualization Techniques

For the categorization of the different visualization tech-
niques we used the “Information Visualization and Data
Mining” taxonomy by Keim [Kei02]. More precisely, we fo-
cused on the part discussing visualization techniques. Based
on this taxonomy it is possible to divide the used techniques
into 5 generalized categories:

• Standard 2D/3D Displays: Includes visualization tech-
niques like x-y (x-y-z) plots (e.g., scatter plots), bar charts,
and line graphs [Kei02].
• Geometrically-transformed Displays: This category

aims to visualize interesting transformations of multidi-
mensional datasets (e.g., scatter plot matrices [And72],
node-link diagrams, parallel coordinates [Kei02], stardi-
nates [LMP05]).

• Iconic Displays: The attributes of multidimensional data
items are mapped onto the features of an icon for the rep-
resentation (e.g., chernoff faces [Che73]), needle icons,
star icons, stick figure icons [PG98], color icons, and tile
bars).

• Dense Pixel Display: Each data point is mapped to a col-
ored pixel and they are grouped into adjacent areas that
represent individual data dimensions. (e.g., matrix visual-
izations).

• Stacked Display: Representations for hierarchical data
(e.g., hierarchical stacking, treemaps, neighborhood
treemaps [DSF∗14] also called Nmaps) and hierarchi-
cal layouts for multidimensional data (e.g., dimensional
stacking [LWW90].)

Discussion: Our findings are summarized in Table 4. It is
interesting that stacked displays and iconic displays are not
commonly used in this domain. More research in appropriate
glyph design seems to be promising because of the compact-
ness of such visualization techniques. Most analysis support
tools use standard 2D displays. Trinius et al. [THGF09] use
treemap representations to analyze system call operations for
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Standard 2D Display - - - 3 3 - 3 3 - 3 - - - - - 3 - 3 3 3 - 3 3 3 3

Standard 3D Display - 3 - 3 - - - 3 - 3 - - - - - - - - - - - - - - -
Geometrically-transformed Display 3 3 - 3 - - 3 3 3 - 3 - - 3 - - - - - - - - - 3 3

Iconic Display - - - - - - - - - 3 3 3 - - - - - - - - - - 3 - -
Dense Pixel Display 3 - 3 - - 3 - - - - - 3 3 - 3 - 3 3 3 3 3 3 3 - -

Stacked Display - - - - 3 - - - - - - 3 - - - - - - - - - - 3 - -

Table 4: Visualization Techniques – A general overview of the most frequently used types of visualization techniques based
on the taxonomy of Keim [Kei02].

Figure 8: Malware Treemap – Visualization providing an
overview of the most frequently used system call operations
for an individual malware sample. It is evident that this sam-
ple uses calls from 6 out of 20 sections with operations
from the “dll handling” and “filesystem”sections occuring
most often. Image c© 2009 IEEE. Reprinted, with permis-
sion, from [THGF09].

individual malware samples, as seen in Figure 8. Interest-
ingly, a total number of 13 tools use visualization techniques
which fall into the category of dense pixel displays. The rea-
son for this is that a wide range of tools depict malware sam-
ples as image-like representations (Figure 6) which can al-
ready be interpreted as dense pixel displays. Dense pixel dis-
plays are also used to convey similarities between malware
samples as can be seen in Figure 9 [SMG12].

6.3. Representation Space & Mapping to Time

While a large variety of visual representations are possible
for analysis of malware data, we can categorize these by two
fundamental dichotomies: the dimensionality of the repre-
sentation space and whether physical time is used to convey
data [AMST11].

In general, the representation space of a visualiza-

Figure 9: Dense Pixel Displays – Each pixel shape repre-
sents a malware sample. Similar malware samples are ar-
ranged next to each other and assigned similar color val-
ues to visualize commonalities [SMG12]. Image courtesy of
Josh Saxe.

tion can be either 2D (two-dimensional) or 3D (three-
dimensional). There is no consensus in the community as
to which of the representations is generally better suited for
visualization [AMST11].

• 2D visualization uses the two available dimensions (x-
axis and y-axis) of a computer display, whereby all vi-
sual elements are described in respect to these coordinates
(e.g., dots, lines, circles and arcs).

• 3D visualizations additionally use the third dimension
(the z-axis) for the representation of a geometry. This im-
plies that the visualization gets more complex by the use
of volumetric structures, as for example seen in Figure 10.

Mapping to time adds the temporal dimension of time to
be used as part of a slide show or animation. This dynamic
approach lends itself to a time-to-time mapping that can be
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Mapping � Static 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Mapping � Dynamic - - - - - - - - 3 - - - - - - - - - - - - - - 3 -
Dimensionality � 2D 3 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Dimensionality � 3D - 3 - 3 - - - 3 - 3 - - - - - - - - - - - - - - -

Table 5: Mapping & Representation Space – An overview of used representation spaces in visualization systems. Almost all
tools focus on static mappings.

Figure 10: 3D Visualization – Panas proposes 3D visual-
ization to generate a specific visual signature that helps to
identify anomalies within a malware family. For the data vi-
sualization, Panas mapped the number of control transfer in-
structions (x-axis), the number of data transfer instructions
(y-axis) and the number of instructions (z-axis) [Pan08]. Im-
age c© 2008 ACM, Included here by permission.

projected to various visual variables. In addition, streaming
data sources or progressively updated automated analysis
can lead to a dynamic mapping [AMST11].

• Static: The data is mapped to display space and other vi-
sual variables that do not change over time. Static map-
ping does not exclude interactivity – it can still be modi-
fied through user interaction.
• Dynamic: Displayed data changes over physical time

without the need for user interaction.

Discussion: Table 5 summarizes the findings with respect
to representation space and mapping to time. Obviously,
most of the tools focus on static mapping. The reason for this
might be that many of the tools use base data that does not
consider chronological order. Another reason might be that
a dynamic representation makes it harder for the analyst to
focus on specific characteristics gleaned through static anal-
ysis. Only the tool by Yee et al. [YCIZ12] uses a more dy-
namic mapping. They provide a visual debugger with node-
link diagrams which can be used to replay the control flow of

a malware sample (Figure 11). On the representation space
side, 4 out of 25 tools map the data to a 3D representa-
tion space in addition to a 2D visualization. The remain-
der utilizes 2D representation only. Only one tool [Pan08]
(see Figure 10) solely uses 3D representation of the analysis
data. Additionally, only two tools ( [YCIZ12] and [WPO14])
provide a static and dynamic mapping to time. In contrast
to static mapping, physical time (dynamic mapping) can be
used to encode data. Therefore, several frames will be ren-
dered for the time steps in the data so that a 1:1 mapping
could be implemented between time steps and frames. How-
ever, in practice this is not always realizable.

Figure 11: Dynamic Mapping – A visual debugger for mal-
ware analyis using node-link diagrams with replay capabil-
ities to show the execution flow of a malware sample over
time [YCIZ12]. Image courtesy of Chen Lee Yee.

6.4. Temporal Aspects

Time-oriented data plays an important role in malware anal-
ysis: For example, the execution order of system or API calls
is relevant to identify certain behavior patterns (such as the
creation and subsequent deletion of files). The time passed
between two specific calls could also be of importance. Time
can be modeled in different ways depending on analysis
goals. For our categorization, we use a selection from time-
oriented data aspects introduced by Aigner et al. [AMST11].
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Scale � Continuous - - - - - - - - - - - - - - - - - - - - - - - - -
Arrangement � Linear - - - 3 3 - 3 3 3 3 3 - - - 3 - - - 3 - 3 3 - 3 -
Arrangement � Cyclic - - - - - - - - - - - - - - - - - - - - - - - - -

Granularity � None - - - 3 3 - 3 3 3 3 - - - - 3 - - - 3 - 3 3 - - -
Granularity � Single - - - - - - - - - - 3 - - - - - - - - - - - - - -

Granularity � Multiple - - - - - - - - - - - - - - - - - - - - - - - 3 -
Time primitives � Instant - - - 3 3 - 3 3 3 3 - - - - 3 - - - 3 - 3 3 - 3 -

Time primitives � Interval - - - - - - - - - - 3 - - - - - - - - - - - - 3 -
Time primitives � Span - - - - - - - - - - - - - - - - - - - - - - - - -

Table 6: Temporal Aspects – An overview of used time primitives. It is interesting to see that only 12 of the reviewed systems
focus on temporal aspects, while the others do not specifically focus or do not convey temporal aspects of the malware behavior
in the visual representations.

6.4.1. Scale

• Ordinal: The ordinal time domain represents only rela-
tions between time aspects without anchoring or quantifi-
cation (e.g., before, after).
• Discrete time domains are also able to model distances

and can be represented by a mapping of time values to a
set of integers.
• Continuous: With this type of time model, a mapping to

real numbers is possible.

6.4.2. Arrangement

• Linear: The linear form corresponds to our perception of
time, from the past to the future (like a timeline) whereby
each element has a predecessor and a successor.
• Cyclic: If the data is composed of a set of recurrent time

values, we are talking about cyclic arrangement (e.g., the
4 seasons of the year).

6.4.3. Granularity and Calendars

• None: If time values are not mapped (divided) by any kind
of granularity (e.g., years, quarters, months and so on), the
system will have no granularity.
• Single granularity describes the mapping of the time val-

ues to only 1 type of granular unit (e.g., years or months).
• Multiple: With the mapping to multiple granularities, it

is possible to divide the time values into years, quarters,
months and so on. Such a mapping is referred to as a cal-
endar.

6.4.4. Time primitives

• Instant: A single point in time is called an instant (e.g.,
January 16, 2015).
• Interval: An interval is a portion of a time between two

instants (e.g., beginning and end).
• Span: A span is an unanchored primitive which repre-

sents a directed duration of time (e.g., 4 hours) in terms of
a number of granules in a given granularity.

Figure 12: Interaction – This tool represents an ordered se-
quence of the malicious actions using an iconic representa-
tion in a spiral form. For the data exploration it is possible to
zoom in and out, rotate, tilt, select different behavior slices,
view the textual logs and compare it with other available be-
havioral data [GBA∗12]. Image courtesy of André Grégio.

Discussion: Interestingly, only 12 out of 25 presented
tools use temporal aspects. All these 12 tools have a linear
arrangement, 11 use an ordinal time scale (see Table 6) and
only the tool by Wüchner et al. [WPO14] uses a discrete
time scale. Only 2 tools use an interval based time primitive,
whereby the [ZN12] tool uses a single granularity (as seen in
Figure 3) and the [WPO14] tool uses multiple granularities.
The remaining 10 visualization systems use instants as time
primitives and do not feature any granularity.

6.5. Interactivity

For the categorization of the systems’ interactive capabil-
ities we explored whether interaction techniques such as
zooming, filtering, panning, details on demand, or brush-
ing/linking are available (e.g., [Shn96, TC05, KMS∗08]).
Additionally, we tried to find out if it is possible to switch
dynamically between different visual data representations.

Discussion: The main issue with this category was that

c© The Eurographics Association 2015.
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Interaction - - 3 3 - - 3 3 3 3 3 3 - - - 3 - 3 - - - - 3 3 3

No Interaction 3 3 - - 3 3 - - - - - - 3 3 3 - 3 - 3 3 3 3 - - -

Table 7: Interactivity – An overview of the level of interactivity in the visualizations used by the tools.

Figure 13: Interaction – Linking the hex editor on the
right to an interactive tree representation enhances naviga-
tion and understanding of malware header data [DPM13].
Image courtesy of John Donahue.

Figure 14: No Interaction – Example for a non-interactive
dense pixel visualization showing similarity between 780
malware samples (top left) and 776 benign samples (bottom
right) [ASL12]. Image c© 2012 ACM, Included here by per-
mission.

many of the papers did not specifically describe which of
the aforementioned features they actually support. Most of
the time, the tools were only dubbed as interactive in gen-
eral without offering a more detailed explanation. There-
fore, we decided to limit the categorization to whether
the system supports any kind of interaction (see Table 7)
without going into detail. Based on this simple catego-
rization we found that 13 out of 25 tools support interac-

Figure 15: No Interaction – Malware samples are arranged
in a node-link diagram with edge weights based on how
many antivirus systems label them in the same category.
The red nodes belong to a known malware family.The place-
ment of the nodes were calculated automatically and the user
could not interact with them [GS11]. Image courtesy of An-
dré Grégio.

tion [CDSS08,QL09,GS11,QL11,YCIZ12,GBA∗12,ZN12,
SMG12,WY13,DPM13,GSG∗14,WPO14,LSG14]. An ex-
ample representation for an interactive analysis tool can be
seen in Figures 12 and 13. A non-interactive solution is de-
picted in Figures 14 and 15.

6.6. Problems/Actions (“Why?”)

Brehmer and Munzner [BM13, Mun14] proposed a multi-
level typology to describe abstract visualization tasks that
may be performed by a user. The abstraction of domain-
specific vocabulary helps to identify similarities between
these tasks but it is hard to abstract them in a comparable
way. Munzner defined three levels of actions to describe a
user’s goal: analyze (top-level), search (mid-level) and query
(bottom-level). The typology translates all needed domain-
specific terms into a generic terminology and thus fits well

c© The Eurographics Association 2015.
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Analyze � Consume � Discover - - 3 3 3 - 3 3 3 3 3 3 - 3 - 3 - 3 3 3 - 3 3 3 3

Analyze � Consume � Present 3 - 3 3 3 3 3 3 - 3 3 3 - - - 3 3 - 3 3 - 3 3 3 3

Analyze � Consume � Enjoy - - - - - - - - - - - - - - - - - - - - - - - - -
Analyze � Produce � Annotate - - - - - - - - - - - 3 - - - - - - - - - - 3 3 -

Analyze � Produce � Record - - - - - - - - - - - - - - - - - - - - - - - - -
Analyze � Produce � Derive - - - - - - - - - - - - - - - - - - - - - - - - -

Search � Lookup - - - 3 - - 3 3 3 - 3 3 - - - - - 3 - - - - 3 - -
Search � Browse - - - - - - - - - - 3 - - - - - - - - - - - 3 - 3

Search � Locate - - 3 3 3 - 3 3 3 - 3 3 - - - - - 3 - - - - 3 - -
Search � Explore - - - - - - 3 - - - 3 3 - - - 3 - - - - - - 3 3 -
Query � Identify - - - - - - - - - - - 3 - - - - - - - - - - 3 3 -

Query � Compare 3 3 - 3 3 3 3 3 - 3 3 3 - 3 3 3 3 - 3 3 3 3 3 - 3

Query � Summarize 3 - - - - - - - - - - 3 3 3 3 - - - - - 3 - - - -

Table 8: Problems/Actions (“Why?”) – The analysis based on the main actions supported by the visualization systems helps
to identify gaps and unexplored research areas.

into our classification framework. In the following, we de-
scribe how we applied these abstract actions to the context
of malware visualization [Mun14].

6.6.1. Analyze

Consume: Information that has previously been generated is
consumed by the user [Mun14]. This subcategory is divided
into the following three types of actions:

• Discover: Describes the generation and verification of hy-
potheses using visual exploration as well as the gaining of
new knowledge about the presented data.
• Present: Incisive information communication or story-

telling based on the visualized data.
• Enjoy: Refers to casual usage or pure enjoyment of visu-

alization without specific goals or needs at hand.

Produce: In this case, the user’s intent is to generate new
material or output which will be used as input for further
(usually visualization-related) tasks [Mun14].

• Annotation: Textually or graphically annotates the visu-
alization. These annotations are typically made by hand
(e.g., tagging the points of a scatter plot).
• Record: Captures or saves selected visualization ele-

ments (e.g., everything that makes sense to store). In con-
trast to the annotate action, the record action saves rele-
vant visualization data as a persistent element.
• Derive: Produces new data elements which are based on

existing data elements. Thus, it is possible to derive new
attributes from existing information or to transform one
data type into another.

6.6.2. Search

All the actions which were presented in the analyze area re-
quire search activities for the elements of interest that are
described in this mid-level area. Munzner divided this area
into four categories whereby the identifier and the location of
the target elements are known or not [Mun14]. In this survey,

we used the malware sample as the target while the malware
characteristics were used as the location.

• Lookup: The user knows what she is looking for and were
it can be found (target and location are known). Applied
to malware visualization, the analyst loads a specific mal-
ware sample to analyze a predetermined set of character-
istics. Such a lookup action would help to e.g., confirm a
suspicion or to investigate certain properties of the sample
in order to to eventually understand its behavior.

• Locate: The user knows what she is searching for but not
where she has to search (location is unknown but target
is known). Applied to malware visualization, the analyst
again loads a specific malware spample to analyze. How-
ever, its relevant behavior features have yet to be discov-
ered. That means that the target of interest is known, but
the location and characteristics need to be located.

• Browse: The user does not know the exact identity of
the target she is looking for but she knows the location
where it can be found. Applied to malware visualization,
the analyst is in this case interested in many different mal-
ware samples. The precise target is unknown; she merely
knows what characteristics to look for.

• Explore: The user does not know what she is looking for
and she also does not know where she has to search (target
and location are unknown). Applied to malware visualiza-
tion, the analyst is interested in many different malware
samples and does not have a specific target in mind. It is
also unclear which of the available characteristics are rel-
evant, so the precise location to look at is also unknown.

6.6.3. Query

Once a (set of) target(s) for a search is identified, additional
information will be queried as part of this bottom-level goal.
Munzner [Mun14] named three different types of queries
which are described below:

• Identify refers to a single target. If the search result is a
known target (usually found by lookup or locate opera-

c© The Eurographics Association 2015.



M. Wagner et al. / Visualization Systems for Malware Analysis

tions), the identify query returns the characteristics of the
target.
• Compare actions consider multiple targets. A compar-

ison query activity takes more sophisticated techniques
than an identify query activity since the specifics of the
comparison need to be determined.
• Summarize actions apply to all possible targets. A “com-

prehensive view of everything” or a “summary display of
everything” should be provided [Mun14].

Discussion: Table 8 offers an overview of the main fo-
cus of the visualization systems in terms of supported ac-
tions. Systems that feature the summarize action are espe-
cially suited for the corresponding category discussed in
Section 5.3. Identifying a specific malware sample is not a
commonly used action used in the reviewed systems. Most
systems instead focus on comparing given malware samples
to a larger set, e.g., to assign them to certain malware fami-
lies.

7. Discussion and Future Challenges

Having surveyed and systematically compared the state of
the art in visualization systems for malware analysis we can
extract a number of findings and propose challenges for fu-
ture work. These results provide particular guidance for vi-
sual analytics professionals working in the domain but also
benefit both the visualization and IT security communities.

Bridge between categories: In Section 5 we identified
three categories of malware visualization systems tackling
different sub-problems of malware forensics and classifi-
cation at the levels of individual malware samples, com-
parison of malware samples, and common features summa-
rized from malware families. It is surprising that these cat-
egories cleanly partition the state-of-the-art in malware vi-
sualization. Furthermore, the prevalence of systems using
malware samples either individually (9) or in comparison
(11) is evident in comparison to systems working with the
summaries of malware families (5), which is in sharp con-
trast to the domain literature’s emphasis on increasing num-
ber of malware, malware families and variants in the wild
(e.g., [LSKJ11, BHFH13, DKLT14]). Since there is a com-
mon goal of generating rules or signatures, it can be assumed
the potential target users of all three visualization system cat-
egories overlap. Thus, future malware visualization systems
should investigate comprehensive designs: for example to
switch perspective between summarization and comparison
or to semantically zoom into individual analysis mode. Like-
wise the integration of common features of malware families
can be integrated into individual malware forensics to make
it more expressive.

Integrate different data sources: Malware analysis is
based on a wide range of base data collected by data
providers under different analysis modes (Section 3). As
malware gets more sophisticated in detecting and avoiding

analysis, there is increasing need to combine different data
providers – for example to combine static and dynamic anal-
ysis. This involves not only supporting different data formats
but also handling the resulting heterogeneous data in a suit-
able way, for example through multiple coordinated views.

Problem characterization and abstraction for tailored
visualization: Many systems use visualization only superfi-
cially and rely on standard displays. However, these visual
representation methods are limited in their visual scalabil-
ity. Yet there is a potential for novel or adapted represen-
tation methods to cater the special needs of malware analy-
sis. Problem-driven visualization research thrives from inter-
disciplinary collaboration with domain experts but needs to
start from a solid problem characterization and abstraction
as base for design and evaluation [Mun14, SMM12, MA14].
Such research on the requirements for malware visualiza-
tion can constitute an independent contribution to research
(e.g., [WAR∗14]).

Involve expert knowledge through interaction: For
keeping up with the large number and dynamic evolution
of malware families, malware analysts need to continuously
adapt the settings of their visualization systems. Interactiv-
ity is a key strength of visualization systems allowing do-
main experts to take other points of view with immediate
feedback [Shn96,TC05,KKEM10]. However, most malware
analysis systems surveyed here are very limited in this re-
gard – only 13 of 25 system reported any evidence for in-
teraction. Even if these deficits in interaction are a recurrent
theme in visualization research, malware analysis in partic-
ular can profit from more extensive interaction and anno-
tation features as it is a very knowledge-intensive job. It
should even be considered to provide knowledge-oriented
interactions allowing to externalize knowledge that can sub-
sequently be used in the analysis process to improve ana-
lysts’ performance [SSS∗14].

Intertwine analytical methods with visualization: Cur-
rently most systems build their visual metaphors directly on
the output of the data providers and only few systems such
as Saxe et al. [SMG12] use additional analytical methods
to classify or cluster the data. Following the visual analyt-
ics agenda [TC05, KKEM10], analytical methods must be
considered alongside visual representation methods for scal-
able and problem-tailored visualization solutions. Further-
more, analytical methods should not be treated as a black
box but should allow adaption by experts through interac-
tion [MPG∗14].

8. Conclusion

In this survey we presented the currently used data providers
as well as a systematic review of visualization systems for
malware analysis. In the first step, we categorized the data
providers in regards to their analysis approach, their envi-
ronment as well as their input and output data formats.
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Each analysis system was then assigned to one of the 3
main categories, depending on their general approach to pro-
cessing and visualization, which were defined in the Mal-
ware Visualization Taxonomy as presented in Figure 2. We
also categorized these systems by their input files and for-
mats, the visualization techniques utilized, the representa-
tion space and the mapping to time, certain temporal aspects,
their interactive capabilities, and the different types of avail-
able user actions. Many of the surveyed systems gather anal-
ysis data internally and base their analysis on the sample’s
binary code. Others use external data providers to retrieve
specific properties. In terms of visualization techniques we
discovered that stacked displays and iconic displays are not
commonly used in the malware domain; most tools utilize
static 2D displays to support the analyst. Dynamic or 3D
representations are rare – only 4 of the explored systems are
able to map data to a 3D representation space. Regarding
the used representation space and the mapping to time, we
found out that most of the systems use a static mapping. On
the temporal side we determined that only 12 out of 25 anal-
ysis systems consider time at all. All time-aware systems use
a linear arrangement. 11 out of these 12 tools use an ordinal
timescale and one uses a discrete one. Most of the tools use
the instant time primitive. Only one tool uses the interval
primitive and one other tool uses instant and interval prim-
itives. In relation to the granularities, only 2 tools out of 12
are using these primitives, whereby one tool uses a single
granularity and one tool uses multiple granularities. Surpris-
ingly, only 13 of the surveyed systems support interaction
while the remainder relies solely on non-interactive repre-
sentations. Of the available user actions, discover, present
and compare operations are the most common. It is interest-
ing to see that the identification of specific malware samples
is usually not a priority. All the results of this survey are
publicly available for interactive exploration on our supple-
mentary website found at http://malware.dbvis.de/.

Furthermore, we defined various future challenges and
perspectives in Section 7 to further improve visual analyt-
ics for malware analysis to eventually help to enhance cyber
security.
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